Acceder a contenido central

REBIUN - ODA

Detalle del título

Descripción del título

cover Advances in independent com...
Advances in independent component analysis and learning machines
Academic Press 2015

In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: A unifying probabilistic model for PCA and ICA Optimization methods for matrix decompositions Insights into the FastICA algorithmUnsupervised deep learning Machine vision and image retrieval A review of developments in the t.

Monografía

Más detalles del título

Cambiar el formato de visualización

Más detalles

Título:
Advances in independent component analysis and learning machines [ Recurso electrónico] / edited by Ella Bingham, Samuel Kaski, Jorma Laaksonen, Jouko Lampinen
Editorial:
London, UK : Academic Press, 2015
Descripción física:
1 recurso electrónico
Mención de serie:
Science Direct e-books
Nota general:
Incluye índices
Contenido:
Front Cover; Advances in Independent Component Analysis and Learning Machines; Copyright; Contents; Preface; About the Editors; List of Contributors; Introduction; A Student and a Co-Worker; Prof. Simon Haykin; Prof. José Príncipe; Prof. Tülay Adali; Prof. Luís Borges de Almeida; Prof. Christian Jutten; Prof. Mark Plumbley; Prof. Klaus-Robert Müller and Dr. Andreas Ziehe; Chapter abstracts; Chapter 1; The initial convergence rate of the FastICA algorithm: The Òne-Third Rule''; Scott C. Douglas; Chapter 2; Improved variants of the FastICA algorithm; Zbynvek Koldovsky and Petr Tichavsky
Chapter 3A unified probabilistic model for independent and principal component analysis; Aapo Hyvärinen; Chapter 4; Riemannian optimization in complex-valued ICA; Visa Koivunen and Traian Abrudan; Chapter 5; Nonadditive optimization; Zhirong Yang and Irwin King; Chapter 6; Image denoising, local factor analysis, Bayesian Ying-Yang harmony learning; Guangyong Chen, Fengyuan Zhu, Pheng Ann Heng and Lei Xu; Chapter 7; Unsupervised deep learning: A short review; Juha Karhunen, Tapani Raiko and KyungHyun Cho; Chapter 8; From neural PCA to deep unsupervised learning; Harri Valpola; Chapter 9
Two decades of local binary patterns: A surveyMatti Pietikäinen and Guoying Zhao; Chapter 10; Subspace approach in spectral color science; Jussi Parkkinen, Hannu Laamanen and Markku Hauta-Kasari; Chapter 11; From pattern recognition methods to machine vision applications; Heikki Kälviäinen; Chapter 12; Advances in visual concept detection: Ten years of TRECVID; Ville Viitaniemi, Mats Sjöberg, Markus Koskela, Satoru Ishikawa and Jorma Laaksonen; Chapter 13; On the applicability of latent variable modeling to research system data; Ella Bingham and Heikki Mannila; Part I: Methods
Chapter 1: The initial convergence rate of the FastICA algorithm: The Òne-Third Rule''1.1 Introduction; 1.2 Statistical analysis of the FastICA algorithm; 1.3 Stationary point analysis of the FastICA algorithm; 1.4 Initial convergence of the FastICA algorithm for two-source mixtures; 1.4.1 Overview of results; 1.4.2 Preliminaries; 1.4.3 Equal-kurtosis sources case; 1.4.3.1 A bound on the average ICI; 1.4.3.2 The probability density function of the ICI; 1.4.3.3 The average value of the ICI; 1.4.4 Arbitrary-kurtosis sources case
1.5 Initial convergence of the FastICA algorithm for three or more source mixtures1.5.1 Overview of results; 1.5.2 Preliminaries; 1.5.3 Three-source case; 1.5.4 Four-source case; 1.5.5 General m-source case; 1.5.6 Equal-kurtosis m-source case using order statistics; 1.6 Numerical evaluations; 1.7 Conclusion; Appendix; Proof of Theorem 1; Proof of Theorems 2 and 3; Proof of Theorem 4; Proofs of Theorem 5 and Associated Corollaries; Proof of Theorem 6; Proof of Theorem 7; Proof of Theorem 8; Proof of Theorem 9; Proof of Theorem 10; Proof of Theorem 11; Proof of Theorem 12; Acknowledgments
Detalles del sistema:
Forma de acceso: World Wide Web
ISBN:
9780128028070
0128028076
9780128028063
Autores:

Préstamo interbibliotecario

Seleccione el centro al que pertenece para solicitar la petición de préstamo de este documento.

Filtrar listado de centros

No hay coincidencias