Descripción del título

Monografía
monografia Rebiun21013361 https://catalogo.rebiun.org/rebiun/record/Rebiun21013361 m o d cr cnu|||unuuu 170502s2017 nyua ob 001 0 eng d 9781536113259 1536113255 9781536111033 1536111031 UPVA 998802914703706 UAM 991008031299904211 NT eng pn NT EBLCP NT YDX OCLCF UNAV 621.042 23 Advances in energy research. Volume 26 Morena J. Acosta, editor New York Nova Science Publishers, Inc. [2017] New York New York Nova Science Publishers, Inc. 1 recurso electrónico il 1 recurso electrónico EBSCO Academic eBook Collection Complete Advances in energy research Incluye referencias bibliográficas e índice Preface; Chapter 1; Heat Transfer in Micro-Ducts; Abstract; Nomenclature; Greek Symbols; Subscripts; 1. Introduction; 2. Background and Review of Previous Studies; 2.1. Classification of the Flow Regimes; 2.2. First and Second Model Slip Flow Models; 2.3. Survey of Previous Studies; 3. Theoretical Formulation; 3.1. Basic Governing Equations; 3.2. Numerical Method and Validation; 4. Results and Discussion; 4.1. Hydrodynamic Field; 4.2. Thermal Field; 4.2.1. Continuum Case (Kn = 0); 4.2.2. Slip Velocity Effects (Kn≠0); Conclusion; Acknowledgment; References; Chapter 2 Optical and Energetic Performance of Volume Holographic Optical Elements for Solar Energy ApplicationsAbstract; 1. Introduction; 2. Holographic Recording; 2.1. Wavefront Recording and Reconstruction in Holography; 2.2. Hologram Types; 2.3. Recording Materials; 3. Literature Review; 4. Geometrical Model for Holographic Lenses; 4.1. Paraxial Approximation; 4.2. Ray Tracing; 5. Energetic Model for Volume Holograms; 5.1. Bragg Condition for Volume Phase Holograms; 5.2. Coupled Wave Theory; 6. Simulated Behavior of a Holographic Cylindrical Lens; 6.1. Local Analysis; 6.2. Global Analysis 7. Experimental Analysis of a Cylindrical Holographic Lens7.1. Recording Setup; 7.2. Experimental Measurements; 8. Lens-Photovoltaic Cell Coupling; 8.1. Concentration Coefficients; 8.2. Simulations of the Holographic Lenses-Cell Coupling Behavior; 8.3. Experimental Measurements; 9. Simulation of a Conceptual Prototype under Real Conditions; Conclusion; References; Chapter 3; The Impact of Alloyed Capping Layers on the Performance of InAs/GaAs Quantum Dot Solar Cells; Abstract; 1. Introduction; 2. Experimental Details; 3. Impact of thin GaAsSb Capping Layers 3.1. Introduction to Thin GaAsSb Capping Layers3.2. Compositional and Structural Analysis; 3.3. Band Structure Simulation; 3.4. Photocurrent Analysis; 3.5. Solar Cell Performance; 4. Impact of thin GaAs(Sb)N Capping Layers; 4.1. Introduction to Thin GaAs(Sb)N Capping Layers; 4.2. Growth and Optimization of GaAs(Sb)N-Capped InAs/GaAs Quantum Dots; 4.3. Structural Analysis and Photoluminescence; 4.4. Solar Cell Performance: Effect of the N Incorporation on Carrier Collection; 4.5. Carrier Escape Times: Theoretical Modelling; 4.6. Alternative Approaches for the Quaternary Capping Layers 5. Analysis of Relative Contributions to the Total Photocurrent: Impact of the Capping Layer NatureConclusion; Acknowledgments; References; Chapter 4; Soap-Based Thermal Insulation: An Environmentally Friendly Alternative to Petroleum Counterparts; Abstract; 1. Introduction; 2. Literature Review; 3. Aim; 4. Research Methodology and Process; Aerating the Soap; 5. Thermal Testing of the Samples; 6. Improving the Soap Samples Further; 6.1. Insulation Degradation; 6.2. Waterproofing the Soap; 6.3. Fire Retardant Soap Casing; 6.4. Making the Soap Vermin Proof; 7. In-Situ Testing Forma de acceso: World Wide Web Acosta, Morena J.