Descripción del título

This work presents the registration and classification of the electromyographic (EMG) signals of the lower extremities, specifically of the gross muscle, in order to control a virtual vehicle designed in Blender. The system has 4 channels, with a graphic interface, which allows the control of a virtual vehicle. For the processing of the signals, different mathematical tools were used such as: Fourier analysis and wavelet analysis. These techniques were used in order to compress data, obtain characteristic patterns in each set of signals and perform digital filtering. The control of the car consists of 4 commands such as: accelerate, stop, right turn and left turn, which are the basic instructions for the real operation of a car. The results showed that it is possible to use biological signals to perform virtual controls (video game). Likewise, it was verified that the parameterization found for each group of EMG signals was satisfactory, since the percentage of errors of the 4 variables studied was 0.04% for a total of 400 executions. This error percentage corroborates that the system has great potential for possible future applications
Este trabajo, se presenta el registro y clasificación de las señales electromiográficas (EMG) de las extremidades inferiores, específicamente del musculo basto, con el fin de controlar un vehículo virtual diseñado en Blender. El sistema tiene de 4 canales, con una interfaz gráfica, que permite el control de un vehículo virtual. Para el procesamiento de las señales, se utilizaron diferentes herramientas matemáticas tales como: análisis de Fourier y análisis wavelet. Estas técnicas se usaron con el objetivo de comprimir datos, obtener patrones característicos en cada conjunto de señales y realizar un filtrado digital. El control del automóvil consta de 4 comandos como: acelerar, detenerse, giro derecha y giro izquierda, las cuales son las instrucciones básicas para el manejo real de un automóvil. Los resultados mostraron que es posible usar señales biológicas para realizar controles virtuales (video juego). Así mismo, se verificó que la parametrizar encontrada de cada grupo de señales EMG, fue satisfactoria, ya que el porcentaje de errores de las 4 variables estudiadas fue del 0.04% para un total de 400 ejecuciones. Este porcentaje de error corrobora que el sistema tiene gran potencialidad para posibles aplicaciones futuras
Analítica
analitica Rebiun31173193 https://catalogo.rebiun.org/rebiun/record/Rebiun31173193 220822s2020 xx o 000 0 eng d https://dialnet.unirioja.es/servlet/oaiart?codigo=7611536 (Revista) ISSN 0122-820X (Revista) ISSN 2422-5053 S9M oai:dialnet.unirioja.es:ART0001413938 https://dialnet.unirioja.es/oai/OAIHandler 15 DGCNT S9M S9M dc Acquisition and processing of electromyographic signals for the control of a virtual vehicle in real time electronic resource] 2020 application/pdf Open access content. Open access content star This work presents the registration and classification of the electromyographic (EMG) signals of the lower extremities, specifically of the gross muscle, in order to control a virtual vehicle designed in Blender. The system has 4 channels, with a graphic interface, which allows the control of a virtual vehicle. For the processing of the signals, different mathematical tools were used such as: Fourier analysis and wavelet analysis. These techniques were used in order to compress data, obtain characteristic patterns in each set of signals and perform digital filtering. The control of the car consists of 4 commands such as: accelerate, stop, right turn and left turn, which are the basic instructions for the real operation of a car. The results showed that it is possible to use biological signals to perform virtual controls (video game). Likewise, it was verified that the parameterization found for each group of EMG signals was satisfactory, since the percentage of errors of the 4 variables studied was 0.04% for a total of 400 executions. This error percentage corroborates that the system has great potential for possible future applications Este trabajo, se presenta el registro y clasificación de las señales electromiográficas (EMG) de las extremidades inferiores, específicamente del musculo basto, con el fin de controlar un vehículo virtual diseñado en Blender. El sistema tiene de 4 canales, con una interfaz gráfica, que permite el control de un vehículo virtual. Para el procesamiento de las señales, se utilizaron diferentes herramientas matemáticas tales como: análisis de Fourier y análisis wavelet. Estas técnicas se usaron con el objetivo de comprimir datos, obtener patrones característicos en cada conjunto de señales y realizar un filtrado digital. El control del automóvil consta de 4 comandos como: acelerar, detenerse, giro derecha y giro izquierda, las cuales son las instrucciones básicas para el manejo real de un automóvil. Los resultados mostraron que es posible usar señales biológicas para realizar controles virtuales (video juego). Así mismo, se verificó que la parametrizar encontrada de cada grupo de señales EMG, fue satisfactoria, ya que el porcentaje de errores de las 4 variables estudiadas fue del 0.04% para un total de 400 ejecuciones. Este porcentaje de error corrobora que el sistema tiene gran potencialidad para posibles aplicaciones futuras LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI English Blender Game Engine Electromyography Fast Fourier Transform Wavelet Transform Blender Motor de juegos Electromiografía Transformada rápida de Fourier Transformada Wavelet text (article) Carrero Carrero, José Luis. cre Mendoza, Luis Enrique. cre Nieto, Zulmary. cre Respuestas, ISSN 2422-5053, Vol. 25, Nº. 1, 2020 Respuestas, ISSN 2422-5053, Vol. 25, Nº. 1, 2020 Respuestas, ISSN 2422-5053, Vol. 25, Nº. 1, 2020