Descripción del título

En este trabajo se plantea una revisión de las analíticas masivas de datos de aprendizaje en la Educación Superior. Se relaciona con un nuevo paradigma de aprendizaje basado en tareas y en logros en consonancia con las capacidades individuales y no con el tiempo, con el espacio o con la edad. La viabilidad y la relevancia las define claramente el problema de 2 sigma, que plantea el amplio horizonte por recorrer hasta un objetivo límite de aprendizaje. Actualmente se constata un decidido interés por el análisis de datos de aprendizaje utilizando los sistemas y el software basado en los entornos sociales y ubicuos y en los nuevos LMS que lo incorporan. El problema es que hasta ahora las herramientas consolidadas de uso común solo obtienen datos y gráficas que relacionan el rendimiento individual con el grupal, y el de éste en conjunto, y además sólo lo hacen con referencia a datos de aprendizaje que hemos introducido merced a procedimientos de evaluación convencionales. Sin embargo hay un espacio que suministra una enorme cantidad de datos no solo para la evaluación del alumno y que actualmente ignoramos, al menos de forma explícita, es el espacio de trabajo personal del alumno conectado, en red con sus iguales, con los profesores, con los recursos y con todo el material que va utilizando y con el registro de los métodos y estrategias con que lo hace.Ahora hay una nueva perspectiva: La analítica masiva de datos personalizados. Los algoritmos utilizados en otros medios, adecuadamente orientados por las teorías del aprendizaje personalizado, por técnicas pedagógicas y de diseño instruccional pueden, junto con los avances en minería de datos, obtener informaciones para ajustar mejor la intervención educativa, para mejorar el rendimiento del alumnos, a más de su satisfacción, y el del programa educativo.
Analítica
analitica Rebiun33854885 https://catalogo.rebiun.org/rebiun/record/Rebiun33854885 230421s2013 xx o 000 0 spa d https://dialnet.unirioja.es/servlet/oaiart?codigo=5166881 (Revista) ISSN 2255-1514 S9M oai:dialnet.unirioja.es:ART0000826674 https://dialnet.unirioja.es/oai/OAIHandler 19 DGCNT S9M S9M dc Analítica de aprendizaje y personalización electronic resource] 2013 application/pdf Open access content. Open access content star En este trabajo se plantea una revisión de las analíticas masivas de datos de aprendizaje en la Educación Superior. Se relaciona con un nuevo paradigma de aprendizaje basado en tareas y en logros en consonancia con las capacidades individuales y no con el tiempo, con el espacio o con la edad. La viabilidad y la relevancia las define claramente el problema de 2 sigma, que plantea el amplio horizonte por recorrer hasta un objetivo límite de aprendizaje. Actualmente se constata un decidido interés por el análisis de datos de aprendizaje utilizando los sistemas y el software basado en los entornos sociales y ubicuos y en los nuevos LMS que lo incorporan. El problema es que hasta ahora las herramientas consolidadas de uso común solo obtienen datos y gráficas que relacionan el rendimiento individual con el grupal, y el de éste en conjunto, y además sólo lo hacen con referencia a datos de aprendizaje que hemos introducido merced a procedimientos de evaluación convencionales. Sin embargo hay un espacio que suministra una enorme cantidad de datos no solo para la evaluación del alumno y que actualmente ignoramos, al menos de forma explícita, es el espacio de trabajo personal del alumno conectado, en red con sus iguales, con los profesores, con los recursos y con todo el material que va utilizando y con el registro de los métodos y estrategias con que lo hace.Ahora hay una nueva perspectiva: La analítica masiva de datos personalizados. Los algoritmos utilizados en otros medios, adecuadamente orientados por las teorías del aprendizaje personalizado, por técnicas pedagógicas y de diseño instruccional pueden, junto con los avances en minería de datos, obtener informaciones para ajustar mejor la intervención educativa, para mejorar el rendimiento del alumnos, a más de su satisfacción, y el del programa educativo. LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI Spanish text (article) Zapata Ros, Miguel. cre Campus Virtuales, ISSN 2255-1514, Vol. 2, Nº. 2, 2013 (Ejemplar dedicado a: Octubre/October), pags. 88-118 Campus Virtuales, ISSN 2255-1514, Vol. 2, Nº. 2, 2013 (Ejemplar dedicado a: Octubre/October), pags. 88-118 Campus Virtuales, ISSN 2255-1514, Vol. 2, Nº. 2, 2013 (Ejemplar dedicado a: Octubre/October), pags. 88-118