Descripción del título

El tamizaje neonatal masivo es una prueba que se realiza a todos los recién nacidos para detectar y prevenir enfermedades congénitas, hereditarias y metabólicas que afectan el crecimiento y desarrollo normal del niño. Esta prueba consiste en realizar una pequeña punción en el talón del bebé para tomar unas pocas gotas de sangre y colocarlas en un papel filtro para ser analizadas en el laboratorio. Una de las etapas de este análisis es la evaluación de la calidad de las muestras basándose en elementos como la coloración de las muestras, el secado, la presencia de impurezas y la presencia de coágulos. Debido a que esta etapa requiere de elevada experiencia, agilidad y memoria visual de los especialistas, en ocasiones se llevan muestras al laboratorio que no brindan los mejores resultados por la baja calidad que presentan. Este trabajo presenta un estudio para desarrollar un clasificador automático basado en redes neuronales profundas que evalúe la calidad de las muestras de sangre analizadas. Este clasificador se basa en el reconocimiento de patrones asociados a los momentos de color y a las componentes de matiz, saturación y valor del brillo, extraídos de las imágenes de las muestras de sangre. Para esto se seleccionó una red neuronal profunda compuesta por dos autocodificadores profundos más un clasificador softmax, entrenada con ejemplos de imágenes de muestras de sangre, obteniéndose resultados satisfactorios en la validación del método con la clasificación correcta de las muestras sometidas a análisis
Analítica
analitica Rebiun33907514 https://catalogo.rebiun.org/rebiun/record/Rebiun33907514 230421s2019 xx o 000 0 spa d https://dialnet.unirioja.es/servlet/oaiart?codigo=6724922 (Revista) ISSN 0258-5944 S9M oai:dialnet.unirioja.es:ART0001301979 https://dialnet.unirioja.es/oai/OAIHandler 16 DGCNT S9M S9M dc Clasificador automático de imágenes de muestras de sangre basado en redes neuronales profundas electronic resource] 2019 application/pdf Open access content. Open access content star El tamizaje neonatal masivo es una prueba que se realiza a todos los recién nacidos para detectar y prevenir enfermedades congénitas, hereditarias y metabólicas que afectan el crecimiento y desarrollo normal del niño. Esta prueba consiste en realizar una pequeña punción en el talón del bebé para tomar unas pocas gotas de sangre y colocarlas en un papel filtro para ser analizadas en el laboratorio. Una de las etapas de este análisis es la evaluación de la calidad de las muestras basándose en elementos como la coloración de las muestras, el secado, la presencia de impurezas y la presencia de coágulos. Debido a que esta etapa requiere de elevada experiencia, agilidad y memoria visual de los especialistas, en ocasiones se llevan muestras al laboratorio que no brindan los mejores resultados por la baja calidad que presentan. Este trabajo presenta un estudio para desarrollar un clasificador automático basado en redes neuronales profundas que evalúe la calidad de las muestras de sangre analizadas. Este clasificador se basa en el reconocimiento de patrones asociados a los momentos de color y a las componentes de matiz, saturación y valor del brillo, extraídos de las imágenes de las muestras de sangre. Para esto se seleccionó una red neuronal profunda compuesta por dos autocodificadores profundos más un clasificador softmax, entrenada con ejemplos de imágenes de muestras de sangre, obteniéndose resultados satisfactorios en la validación del método con la clasificación correcta de las muestras sometidas a análisis LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI Spanish tamizaje neonatal momentos de color componentes HSV autocodificadores profundos reconocimiento de patrones text (article) Pla Martinez, Gilbert. cre Irizar Mesa, Mirtha F. cre Revista Científica de Ingeniería Electrónica, Automática y Comunicaciones, ISSN 0258-5944, Vol. 40, Nº. 1, 2019, pags. 18-30 Revista Científica de Ingeniería Electrónica, Automática y Comunicaciones, ISSN 0258-5944, Vol. 40, Nº. 1, 2019, pags. 18-30 Revista Científica de Ingeniería Electrónica, Automática y Comunicaciones, ISSN 0258-5944, Vol. 40, Nº. 1, 2019, pags. 18-30