Acceder a contenido central

REBIUN - ODA

Detalle del título

Descripción del título

cover Advances in evolutionary an...
Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences

This book contains state-of-the-art contributions in the field of evolutionary and deterministic methods for design, optimization and control in engineering and sciences. Specialists have written each of the 34 chapters as extended versions of selected papers presented at the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN 2013). The conference was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Topics treate

Congress proceedings (reports) Conference papers and proceedings. Conference papers and proceedings. Actes de congrès.

Monografía

Más detalles del título

Cambiar el formato de visualización

Más detalles

Título:
Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences / David Greiner [and 5 more], editors
Editorial:
Cham : Springer, [2014]
2015
Descripción física:
1 online resource (xi, 522 pages) : illustrations
Tipo Audiovisual:
mechanica
mechanics
engineering
computational science
optimalisatie
optimization
ontwerp
design
Engineering (General)
Techniek (algemeen)
Mención de serie:
Computational Methods in Applied Sciences, 1871-3033 ; volume 36
Nota general:
Includes author index
Bibliografía:
References2 Hybrid Optimization Algorithms and Hybrid Response Surfaces; 2.1 Introduction; 2.2 Hybrid Optimization Algorithm Concepts; 2.3 Hybrid Response Surface Generation Concepts; 2.3.1 Polynomial Regression; 2.3.2 Self Organizing Algorithms [19, 20]; 2.3.3 Kriging; 2.3.4 Radial Basis Functions; 2.3.5 Wavelet Based Neural Networks [31, 32]; 2.4 Hybrid Methods for Response Surfaces; 2.4.1 Fittest Polynomial Radial Basis Function (FP-RBF) [28]; 2.4.2 Kriging Approximation with Fittest Polynomial Radial Basis Function (KRG-FP-RBF) ; 2.4.3 Hybrid Self Organizing Model With RBF [20]
Contenido:
Preface; Contents; Part ITheoretical and Numerical Methodsand Tools for Optimization:Theoretical Methods and Tools; 1 Multi-objective Evolutionary Algorithms in Real-World Applications: Some Recent Results and Current Challenges; 1.1 Introduction; 1.2 Basic Concepts; 1.3 Dealing with Expensive Problems; 1.3.1 Use of Problem Approximation; 1.3.2 Use of Functional Approximation; 1.3.3 Use of Evolutionary Approximation; 1.4 Other Approaches; 1.4.1 Cultural Algorithms; 1.4.2 Use of Very Small Population Sizes; 1.4.3 Use of Efficient Search Techniques; 1.5 Future Research Paths; 1.6 Conclusions
2.4.4 Genetic Algorithm Based Wavelet Neural Network (HYBWNN) [31, 32]2.5 Comparison Among Different Response Surface Algorithms; 2.5.1 Fittest Polynomial RBF Versus Hybrid Wavelet Neural Network [42]; 2.5.2 Fittest Polynomial RBF Versus Kriging; 2.5.3 Fittest Polynomial RBF Versus Hybrid Self Organizing Response Surface Method -- HYBSORSM ; 2.5.4 Fittest Polynomial RBF Versus Kriging Approximation with Fittest Polynomial Radial Basis Function -- KRG-FP-RBF; 2.6 Conclusions; References; 3 A Genetic Algorithm for a Sensor Device Location Problem; 3.1 Introductionaut]Daniele, Elia
3.2 Constrained Location Problem3.2.1 Preliminaries; 3.2.2 The Facility Location Game; 3.2.3 Location of Sensor Devices on a Grid; 3.3 Nash Genetic Algorithm for the Location Problem; 3.3.1 Genetic Algorithm; 3.3.2 Nash Equilibrium Game; 3.3.3 Test Cases; 3.4 Conclusions; References; 4 The Role of Artificial Neural Networks in Evolutionary Optimisation: A Review; 4.1 Introduction; 4.1.1 Evolutionary Algorithms; 4.1.2 Artificial Neural Networks ANN; 4.2 Different Use of ANNEO and EOANN; 4.2.1 The Use of EOs in ANNs: EOANN; 4.2.2 The Use of ANNs in EO: ANNEO
4.3 Some Applications Using ANNEO and EOANN4.4 Conclusions; References; 5 Reliability-Based Design Optimization with the Generalized Inverse Distribution Function; 5.1 Introduction; 5.2 Robust Optimization; 5.3 The Generalized Inverse Distribution Function Method; 5.4 A Robust Optimization Test Case; 5.5 Evaluating and Improving the Quantile Estimation; 5.6 Single and Multi-objective Reliability Optimization Tests; 5.7 Conclusions; References; Part IITheoretical and Numerical Methodsand Tools for Optimization:Numerical Methods and Tools
Copyright/Depósito Legal:
900312101 908088834 961520899 1005809830 1012050563
ISBN:
9783319115412 ( electronic bk.)
3319115413 ( electronic bk.)
3319115405
9783319115405
9783319115405
Materia:
Autores:
Congresos:
EUROGEN (Conference) ( 10th :. 2013 :. Las Palmas, Canary Islands)
Enlace a formato físico adicional:
Print version: Greiner, David. Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences., Cham : Springer International Publishing, 2014 9783319115405
Punto acceso adicional serie-Título:
Computational methods in applied sciences ; volume 36

Préstamo interbibliotecario

Seleccione el centro al que pertenece para solicitar la petición de préstamo de este documento.

Filtrar listado de centros

No hay coincidencias

Relacionados

Mismo Género