Descripción del título

The scope of this book is metamaterials and their application areas, and the aim of the book is to enable engineers and researchers interested in the application areas of metamaterials to access a lot of information about metamaterials in a single book
Monografía
monografia Rebiun36507159 https://catalogo.rebiun.org/rebiun/record/Rebiun36507159 m o d | cr cnu|||||||| 241222s2023 enk ob 000 0 eng d 9780750357562 0750357568 UPVA 998812692703706 UPM 991006277046304212 CBUC 991011025965706709 CBUC 991001042365506712 UPCT u671262 MiAaPQ eng rda pn MiAaPQ MiAaPQ 620.11 23 Advanced Metamaterials for Engineers edited by Lulu Wang and Muharrem Karaaslan First edition Bristol, England IOP Publishing Ltd [2023] Bristol, England Bristol, England IOP Publishing Ltd 2023 1 online resource (358 pages) 1 online resource (358 pages) Text txt rdacontent computer c rdamedia online resource cr rdacarrier IOP Ebooks Series Includes bibliographical references Intro -- Editor biographies -- Lulu Wang -- Muharrem Karaaslan -- List of contributors -- Chapter Characterization of metamaterials -- 1.1 Classification of metamaterials -- 1.1.1 Double positive (DPS) materials -- 1.1.2 Epsilon negative (ENG) materials -- 1.1.3 Mu negative (MNG) materials -- 1.1.4 Double negative (DNG) materials -- 1.2 Types of MTM -- 1.2.1 Artificial dielectrics -- 1.2.2 Artificial magnetics -- 1.2.3 Chiral materials -- 1.2.4 Plasmonic materials -- 1.2.5 Omega shape materials -- 1.2.6 Tunable materials -- 1.3 Metamaterials' properties dependence -- 1.3.1 Frequency -- 1.3.2 Geometry and size -- 1.3.3 Temperature -- 1.3.4 Homogenity -- 1.4 Techniques of characterization of MTMs -- 1.4.1 Resonator methods -- 1.4.2 S-parameter -- 1.4.3 Waveguide method -- 1.4.4 Nicolson-Ross-Weir method -- 1.4.5 Free-space method -- 1.5 Results and discussion -- 1.6 Conclusions -- Bibliography -- Chapter Microwave metamaterial sensors -- 2.1 Introduction -- 2.2 Microfluidic sensors -- 2.3 THz metamaterial sensors -- 2.4 The metamaterial absorber based sensors -- 2.5 New approaches in metamaterial sensors by using machine learning or a three-dimensional (3D) metamaterial-based sensor -- 2.6 Future challenges and future works -- 2.7 Conclusion -- References -- Chapter Metamaterial absorbers in the microwave range -- 3.1 Introduction -- 3.2 Microwave region of the electromagnetic spectrum -- 3.3 Microwave absorption mechanism -- 3.4 Absorber design processes -- 3.5 Flexible metamaterial absorber designs -- 3.6 Discussions -- 3.7 Future works -- 3.8 Conclusions -- References -- Chapter Dual-band terahertz metamaterial absorber with high sensitivity for sensing applications -- 4.1 Introduction -- 4.2 The unit cell model's design -- 4.3 Results and analysis -- 4.4 Conclusions -- References -- Chapter Metamaterial energy harvesters 5.1 Introduction -- 5.2 Piezoelectric-based acoustic and acoustoelastic wave energy harvesting -- 5.3 RF regime energy harvesting -- 5.4 Infrared and visible regime energy harvesting -- 5.5 Results and discussions -- 5.6 Conclusion -- References -- Chapter Frequency selective surfaces (FSSs) in metamaterials -- 6.1 Introduction -- 6.2 Operational principles of periodic structures -- 6.3 Explanation of the functional mechanism of frequency selective surfaces -- 6.4 Equivalent circuit of FSS -- 6.5 Applications of FSS -- 6.5.1 Spatial filter based on FSS -- 6.5.2 Integration of the FSS with antennas -- 6.5.3 MIMO system based on FSSs -- 6.5.4 Electromagnetic shielding based on FSS -- 6.5.5 Meta-skin -- 6.5.6 3D FSS structures -- 6.5.7 Reconfigurable FSS -- 6.5.8 FSS impacted textiles -- 6.6 Effective approaches for analyzing, optimizing, and fabricating frequency selective surfaces -- 6.7 Results and discussion -- 6.8 Conclusion -- Conflicts of interest -- References -- Chapter Metasurfaces -- 7.1 Introduction -- 7.2 About MSs -- 7.2.1 The generalized law of refraction -- 7.2.2 Huygens' MS -- 7.2.3 MSs based on the Pancharatnam-Berry phase -- 7.3 Applications of MSs -- 7.3.1 Polarization -- 7.3.2 MS-based polarization converters -- 7.3.3 MS-based polarization converter studies -- 7.4 Conclusion -- References -- Chapter Flexible metamaterials -- 8.1 Introduction -- 8.2 Flexible materials for MTMs -- 8.3 Electronics for flexible MTMs -- 8.4 Antennas for flexible MTMs -- 8.5 Energy harvesting for flexible MTMs -- 8.6 Flexible mechanical MTMs -- 8.7 Flexible THz MTMs -- 8.8 Discussion, challenges, and future perspectives -- 8.9 Conclusion -- References -- Chapter Acoustic metamaterials -- 9.1 Introduction -- 9.1.1 Negative refractive index of phononic crystals and acoustic lens property -- 9.1.2 Fractal phononic crystals and their band structure 9.2 Phononic crystal based tunable piezoelectric waveguide -- 9.3 Second harmonic generation in acoustic metamaterials -- 9.4 Acoustic subwavelength structures -- 9.4.1 FEM model of resonant arrays for numerical analysis -- 9.4.2 Transmission analysis -- 9.4.3 Complementary split rectangular resonator (CSRR) locally resonant sonic crystal -- 9.5 Acoustic Weyl point materials -- 9.5.1 Design of a phononic crystal with type-III Weyl points -- 9.6 Challenges and future works -- 9.7 Conclusion -- Author contributions -- Data availability statement -- Acknowledgments -- Conflicts of Interest -- References -- Chapter Data-driven modeling of microstrip reflectarray unit element design -- 10.1 Introduction -- 10.2 Methods -- 10.3 Modeling of the RA unit element -- 10.4 Sampling strategies for gathering data points -- 10.5 Artificial intelligence based surrogate modeling -- 10.5.1 Artificial neural networks -- 10.5.2 Support vector regression machine -- 10.5.3 Ensemble learning -- 10.5.4 Gaussian process regression -- 10.5.5 Deep neural network -- 10.5.6 Hyperparameter optimization -- 10.5.7 Benchmarking -- 10.6 Results and discussion -- 10.7 Challenges and future works -- References -- Chapter Metamaterials for sensing and biomedical applications -- 11.1 Introduction -- 11.2 Theory and analytical treatment of a prism-coupled waveguide sensor -- 11.2.1 Results and discussion of PCWS -- 11.3 Hyperbolic metamaterial-based sensor for detection of cancer cells -- 11.3.1 Results and discussion -- 11.4 Nanoscale sensor for temperature sensing -- 11.4.1 Theory and design of a temperature sensor -- 11.5 Conclusion and future work -- Author contributions -- Data availability statement -- Acknowledgments -- Conflicts of interest -- References -- Chapter Metamaterial signal absorbers and applications -- 12.1 Introduction -- 12.2 Absorption mechanism 12.3 Multiple reflection -- 12.4 Absorber applications -- 12.5 Absorber designs for energy harvesting -- 12.6 Absorber for solar energy -- 12.7 Absorber for sensor applications -- 12.8 Tunable metamaterial absorber -- 12.9 Conclusion -- References The scope of this book is metamaterials and their application areas, and the aim of the book is to enable engineers and researchers interested in the application areas of metamaterials to access a lot of information about metamaterials in a single book Metamaterials Electrical engineering Wang, Lulu editor Karaaslan, Muharrem editor 9780750357555 075035755X IOP Ebooks Series