Acceder a contenido central

REBIUN - ODA

Detalle del título

Descripción del título

cover Cognitive computing for Int...
Cognitive computing for Internet of Medical Things

"Cognitive Computing for Internet of Medical Things (IoMT) offers a complete assessment of the present scenario, role, challenges, technologies, and impact of IoMT-enabled smart healthcare systems. It contains chapters discussing various biomedical applications under the umbrella of the IoMT"--

Monografía

Más detalles del título

Cambiar el formato de visualización

Más detalles

Título:
Cognitive computing for Internet of Medical Things / edited by A Prasanth [and four others]
Editorial:
Boca Raton, Florida ; London ; New York : CRC Press, [2023]
2023
Descripción física:
1 online resource (231 pages)
Bibliografía:
Includes bibliographical references and index
Contenido:
Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- List of Contributors -- 1. Toward the Internet of Things and Its Applications: A Review on Recent Innovations and Challenges -- 1.1 Introduction -- 1.1.1 Sensor Layer -- 1.1.2 Communication Layer -- 1.1.3 Network Device Layer -- 1.1.4 Data Center Layer -- 1.1.5 Application and Analytics Layer -- 1.2 IoT and Transportation -- 1.2.1 Smart Parking -- 1.2.2 Peer-to-Peer Ridesharing -- 1.2.3 Self-Driving Cars -- 1.3 IoT and Smart Cities -- 1.3.1 Telemedicine -- 1.3.2 Smart Security -- 1.3.3 Real-Time Environment Monitoring System -- 1.4 Precision Agriculture -- 1.5 Conclusions -- References -- 2. Introduction to Cognitive Computing -- 2.1 Introduction -- 2.2 Evolution of Cognitive Computing -- 2.3 Comparison -- 2.3.1 Example Case -- 2.4 Dimensions of Cognitive Computing -- 2.4.1 Reasoning -- 2.4.2 Relating -- 2.4.3 Perception -- 2.4.4 Learning -- 2.5 Architecture of Cognitive Computing -- 2.5.1 IoT in Cognitive Computing -- 2.5.2 Big Data Analysis in Cognitive Computing -- 2.5.3 Cloud and Cognitive Computing -- 2.6 Supporting Technologies for Cognitive Computing -- 2.6.1 Reinforcement Learning -- 2.6.1.1 Components -- 2.6.1.2 Approaches -- 2.6.2 Cognitive Computing and Deep Learning -- 2.6.3 Cognitive Computing and Image Processing -- 2.7 Cognitive Analytics (Coganalytics) -- 2.8 Applications of Cognitive Computing -- 2.8.1 Cognitive Computing in Robotic Industry -- 2.8.2 Cognitive Computing in Emotion Communication -- 2.8.3 Cognitive Computing in Retail and Logistics Industry -- 2.8.4 Cognitive Computing in Banking and Finance -- 2.8.5 Cognitive Computing in the Power and Energy Sector -- 2.8.6 Cognitive Computing in Cybersecurity -- 2.8.7 Cognitive Computing in Healthcare -- 2.8.7.1 Impacts of Cognitive Computing in Healthcare -- 2.9 Conclusions
References -- 3. IoT with 5G in Healthcare Systems -- 3.1 Introduction -- 3.1.1 Examples of IoT in Healthcare -- 3.1.2 Working Principles of IoT in Healthcare -- 3.1.3 Advantages of IoT in Healthcare -- 3.1.4 Obstacles of IoT in Healthcare -- 3.2 5G Connectivity -- 3.2.1 5G-IoT Healthcare Applications -- 3.2.1.1 From Vision to Reality -- 3.2.1.2 Abilities of VOLANSYS 5G -- 3.2.2 5G Connectivity, e-Health, and m-Health -- 3.2.3 5G in Revolutionized Healthcare -- 3.2.3.1 Fast Transmission of Huge Imaging Documents -- 3.2.3.2 Broadening Telemedicine Administrations -- 3.2.3.3 Enhancing Augmented Reality, Virtual Reality, and Spatial Computing -- 3.2.3.4 Predictable, Constant Remote Observing -- 3.2.3.5 ML & -- AI -- 3.3 Internet of Medical Things (IoMT) -- 3.3.1 IoT Security -- 3.3.2 IoMT Obstacles -- 3.3.3 Opportunities in Healthcare Information Technology -- 3.3.4 Computerized Therapeutics (DTx) -- 3.4 Conclusions -- References -- 4. Communication Protocols for IoMT-Based Healthcare Systems -- 4.1 Introduction -- 4.2 Architecture of IoT -- 4.2.1 Three-Layer Architecture -- 4.2.2 Middleware Architecture -- 4.2.3 Service-Oriented Architecture (SOA) -- 4.2.4 Five-Layer Architecture -- 4.2.5 Cloud-Specific Architecture -- 4.3 Architecture of IoMT -- 4.4 IoMT Communication Protocols -- 4.4.1 Zigbee Protocol -- 4.4.2 Radio-Frequency Identification (RFID) -- 4.4.3 Time Synchronized Mesh Protocol (TSMP) -- 4.4.4 Near-Field Communication (NFC) -- 4.4.5 Bluetooth IEEE 802.15.1 -- 4.4.6 Wireless-HART -- 4.4.7 Weightless -- 4.4.8 Wireless Fidelity (Wi-Fi) -- 4.4.9 Constrained Application Protocol (CoAP) -- 4.4.10 Message Queuing Telemetry Transport (MQTT) -- 4.4.11 Advanced Message Queuing Protocol (AMQP) -- 4.4.12 Data Distribution Service (DDS) -- 4.4.13 Extensible Messaging and Presence Protocol (XMPP) -- 4.4.14 WebSocket -- 4.5 Conclusions -- References
5. Security and Privacy of Biomedical Data in IoMT -- 5.1 Introduction -- 5.1.1 IoMT Architecture -- 5.1.1.1 Application Layer -- 5.1.1.2 Network Layer -- 5.1.1.3 Perception Layer -- 5.2 Background -- 5.2.1 Privacy and Security Needs for IHS -- 5.2.1.1 Requirements at Data Level -- 5.2.1.2 Requirements at Sensor Level -- 5.2.1.3 Requirements at Personal Server Level -- 5.2.1.4 Requirements at Medical Server Level -- 5.2.2 IHS Security Schemes -- 5.2.3 The Relationship between IoMT Vulnerabilities and Threats -- 5.3 Findings -- 5.3.1 Security Plans for Installable IoMT Devices -- 5.3.2 Targeted Security and Privacy Aspects in IoMT -- 5.3.2.1 Breach of Data Confidentiality -- 5.3.2.2 Attacks Employing Social Engineering (SE) -- 5.3.2.3 Privacy Invasion -- 5.3.2.4 Message Validation and Data Security Threats -- 5.3.2.5 Tool/User Authentication Threats -- 5.3.2.6 Malware Attacks -- 5.3.3 IoMT Security Measures -- 5.3.3.1 Non-Technical Safety Precautions -- 5.3.3.2 Technological Security Procedures -- 5.4 Discussion -- 5.4.1 Inexpensive Cryptographic Algorithms -- 5.4.2 Inexpensive Authentication Protocols -- 5.4.3 Security Architecture with Layer -- 5.4.4 Detecting Sensor Anomalies in Medical Devices -- 5.5 Conclusions and Future Work -- 5.5.1 Future Research Directions -- References -- 6. Cyber-Security Threats to IoMT-Enabled Healthcare Systems -- 6.1 Introduction -- 6.1.1 Where Did IoMT Comes from -- 6.1.2 Heart of the Problem -- 6.1.3 Motivations -- 6.1.4 Contributions -- 6.2 IoMT Framework, Perception, and Future -- 6.2.1 Devices of IoMT -- 6.2.2 Application and Service Domains of IoMT -- 6.3 IoMT Challenges, Risks, and Concerns -- 6.3.1 IoMT Challenges -- 6.3.2 Risks within IoMT -- 6.3.3 IoMT Concerns -- 6.4 Cyber-Attacks Aligned with IoMT -- 6.4.1 Features of Cyber-Attacks -- 6.4.2 IoMT Targeted Security Aspects -- 6.5 Methodologies
6.5.1 Dataset Description -- 6.5.1.1 Characteristic Details -- 6.5.2 Existing Method -- 6.5.3 Proposed Method -- 6.5.3.1 Model Design -- 6.5.3.2 Experiment Setup -- 6.5.4 Performance Metrics and Result Evaluation -- 6.5.4.1 Evaluation Metrics -- 6.5.4.2 Result Evaluation -- 6.5.4.3 Model Structure and Performance -- 6.6 Conclusions -- References -- 7. Using Self-Organizing Map to Find Cardiac Risk Based on Body Mass Index -- 7.1 Introduction -- 7.2 Literature Survey -- 7.3 Methodology -- 7.3.1 BMI Scales -- 7.4 Results and Discussion -- 7.5 Conclusions -- References -- 8. Embedded Medical IoT Devices for Monitoring and Diagnosing Patient Health in Rural Areas Peoples Using IoMT Technology -- 8.1 Introduction -- 8.2 HIoT Technology -- 8.2.1 Location Technology -- 8.2.2 Technology of Identification -- 8.2.3 Technology of Communication -- 8.3 Applications and Services of IoMT -- 8.3.1 Services -- 8.3.1.1 Ambient Assisted Living -- 8.3.1.2 Mobile IoT -- 8.3.1.3 Wearable Devices -- 8.3.1.4 Cognitive Computing -- 8.3.1.5 Reaction of Drug -- 8.3.1.6 Blockchain -- 8.3.1.7 Child Health Information -- 8.3.2 Applications -- 8.3.2.1 ECG Monitoring -- 8.3.2.2 Monitoring the Glucose Level -- 8.3.2.3 Temperature Monitoring -- 8.3.2.4 Blood Pressure Monitoring -- 8.3.2.5 Measuring Oxygen Saturation -- 8.3.2.6 Measuring and Monitoring Asthma -- 8.3.2.7 Monitoring the Mood -- 8.3.2.8 Management of Medication -- 8.3.2.9 Management of Wheelchair -- 8.3.2.10 Rehabilitation System -- 8.3.2.11 Other Notable Applications -- 8.4 Limitations, Challenges, and Opportunities -- 8.4.1 Servicing and Maintenance Cost -- 8.4.2 Power Usage -- 8.4.3 Standardization -- 8.4.4 Data Privacy and Security -- 8.4.5 Scalability -- 8.4.6 Identification -- 8.4.7 Self-/Automatic Configuration -- 8.4.8 Continuous Monitoring -- 8.4.9 Investigation of New Diseases -- 8.4.10 Impact on Environment
8.5 Conclusions -- References -- 9. Case Studies: Cancer Prediction and Diagnosis in the IoMT Environment -- 9.1 Introduction -- 9.1.1 Types of Cancerous Tumors -- 9.1.2 Cogitation on Cancer Prediction -- 9.2 ML and IoMT -- 9.3 Best Cancer Prediction and Diagnosis Using Supervised Algorithm -- 9.4 Early Detection of Tumor Cells and Symptoms of Breast Cancer -- 9.5 Various ML-Based Breast Cancer Classification -- 9.5.1 LR Classifier -- 9.5.2 SVM in Cancer Detection -- 9.5.3 DT Classifier -- 9.6 Performance Evaluation -- 9.6.1 Result Analysis of LR Classifier -- 9.6.1.1 Confusion Matrix for LR Classifier -- 9.6.2 Analysis of SVM Classifier -- 9.6.2.1 Confusion Matrix for SVM Classifier -- 9.6.3 Analysis of DT Classifier -- 9.6.3.1 Confusion Matrix for DT Classifier -- 9.7 Comparative Analysis of Various Classifiers -- 9.8 Conclusions -- References -- 10. A Deep Exploration of Imaging Diagnosis Approaches for IoMT-Based Coronavirus Disease of 2019 Diagnosis System - A Case Study -- 10.1 Introduction -- 10.2 Backgrounds of Imaging Techniques -- 10.2.1 PET -- 10.2.2 Lung Ultrasound -- 10.2.3 MRI -- 10.3 Features to Be Pondered of COVID -- 10.4 Algorithms Deployed for Imaging Techniques -- 10.4.1 Visual Geometry Group Net -- 10.4.2 Inception V3 Designs -- 10.4.2.1 ResNet -- 10.4.2.2 DenseNet -- 10.4.2.3 Inf-Net -- 10.4.2.4 UNet -- 10.5 Machine Learning Techniques -- 10.6 Coronavirus Dataset -- 10.7 Related Works of Coronavirus Disease of 2019 and IoT -- 10.7.1 Coronavirus Disease of 2019 Symptoms Imaging System -- 10.8 Conclusions -- References -- Index
ISBN:
1-00-325624-4
1-003-25624-4
1-000-80600-6
Materia:
Autores:
Enlace a formato físico adicional:
1-03-218788-3

Localizaciones

Filtrar listado de centros

No hay coincidencias

Préstamo interbibliotecario

Seleccione el centro al que pertenece para solicitar la petición de préstamo de este documento.

Filtrar listado de centros

No hay coincidencias