Acceder a contenido central

REBIUN - ODA

Detalle del título

Descripción del título

cover Fluid Mechanics and Hydraul...
Fluid Mechanics and Hydraulics : Illustrative Worked Examples of Surface and Subsurface Flows

The book presents the basic principles of fluid mechanics through the use of numerous worked examples. It serves as an effective learning source for college students and as a teaching tool for instructors (with an included solutions manual) as well as for practicing professionals in the areas of fluid mechanics and hydraulics

Monografía

Más detalles del título

Cambiar el formato de visualización

Más detalles

Título:
Fluid Mechanics and Hydraulics : Illustrative Worked Examples of Surface and Subsurface Flows / Vedat Batu
Edición:
First edition
Editorial:
Boca Raton, FL : CRC Press, [2024]
2024
Descripción física:
1 online resource (1269 pages)
Contenido:
Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Author -- Part A: Fundamentals -- 1. Definitions and the Presentation Framework of the Book -- 1.1 Basic Definitions for the Branches of Fluid Mechanics -- 1.2 Historical Background of Fluid Mechanics -- 1.2.1 Before the Middle Ages -- 1.2.2 Middle Ages -- 1.2.3 Sixteenth, Seventeenth, and Eighteenth Centuries -- 1.2.4 Nineteenth Century -- 1.2.5 Unification of Experimental Hydraulics and Theoretical Hydrodynamics -- 1.3 Presentation of the Framework of the Book -- 1.3.1 Part A -- 1.3.2 Part B -- 1.3.3 Part C -- 1.3.4 Part D -- 2. Physical Characteristics of Fluids -- 2.1 Introduction -- 2.2 Dimensions and Units -- 2.2.1 SI System -- 2.2.2 English FSS System -- 2.3 Density, Specific Weight, Specific Volume, and Specific Gravity -- 2.3.1 Density and Specific Weight of Fluids -- 2.3.2 Specific Volume -- 2.3.3 Specific Gravity (s.g.) of Fluids -- 2.3.4 Specific Weight and Density of a Perfect Gas -- 2.3.5 Units of the R Specific Gas Constant and Its Values for Dry Air -- 2.4 Compressibility of Fluids -- 2.4.1 Compressible and Incompressible Fluids -- 2.4.2 Compressibility and Elasticity of Fluids -- 2.5 Viscosity of Fluids -- 2.5.1 Definition of Viscosity -- 2.5.2 Newton's Viscosity Law for Laminar Flows -- 2.6 Surface Tension and Capillarity -- 2.6.1 Surface Tension -- 2.6.2 Capillarity -- Problems -- Part B: Vector Analysis and Integral Theorems -- 3. Fundamentals for Vector Analysis -- 3.1 Introduction -- 3.2 Scalars and Vectors -- 3.2.1 Scalars -- 3.2.2 Vectors -- 3.3 Unit Vectors -- 3.3.1 Definition of a Unit Vector -- 3.3.2 Rectangular Unit Vectors -- 3.3.3 Components of a Vector -- 3.4 Products of Vectors -- 3.4.1 Scalar or Dot Product -- 3.4.2 Cross Product -- 3.5 Vector Differentiation
3.5.1 Definition of Differentiation for a f(x) Function -- 3.5.2 Differentiation of a Vector-Valued Function -- 3.5.3 Differentiation of Three-dimensional Curves -- 3.5.4 Velocity and Acceleration -- 3.6 Gradient, Divergence, Curl, and Formulas Involving -- 3.6.1 The Vector Differential Operator -- 3.6.2 Gradient -- 3.6.3 Divergence -- 3.6.4 Curl -- 3.6.5 Formulas Involving -- 3.6.6 Solenoidal Vector Fields -- 3.6.7 Triple Products -- 3.7 Some Vector and Scalar Quantities in Orthogonal Coordinates System -- 3.7.1 Arc Length and Volume Element -- 3.7.2 (SZ(B Expression in Orthogonal Curvilinear Coordinates -- 3.7.3 .A Expression in Orthogonal Curvilinear Coordinates -- 3.7.4 × A Expression in Orthogonal Curvilinear Coordinates -- 3.7.5 [sup(2)] (SZ(B Expression in Orthogonal Curvilinear Coordinates -- 3.8 Some Vector and Scalar Quantities in Circular Cylindrical Coordinates -- 3.8.1 Square of the Element of the Arc Length in Circular Cylindrical Coordinates and Its Corresponding Scale Factors -- 3.8.2 (SZ(B in Circular Cylindrical Coordinates -- 3.8.3 .A in Circular Cylindrical Coordinates -- 3.8.4 × A in Circular Cylindrical Coordinates -- 3.8.5 [sup(2)] (SZ(B in Circular Cylindrical Coordinates -- 4. Vector Calculus and Integral Theorems -- 4.1 Introduction -- 4.2 Line, Surface, and Volume Integrals -- 4.2.1 Line Integrals -- 4.2.2 Surface Integrals -- 4.2.3 Volume Integrals -- 4.3 Green's Theorem in the Plane -- 4.3.1 The Expression of the Green's Theorem -- 4.3.2 Proof of the Green's Theorem -- 4.4 Gauss Divergence Theorem -- 4.4.1 The Expression of the Gauss Divergence Theorem -- 4.4.2 Proof of the Gauss Divergence Theorem in a Fluid Flow Field -- 4.5 Stokes' Theorem -- 4.5.1 The Expression of the Stokes' Theorem -- 4.5.2 Proving the Stokes' Theorem for a Fluid Flow Field -- 4.6 Leibniz's Rule for Differentiating an Integral -- 4.6.1 Introduction
4.6.2 Derivation of the Leibniz's Rule -- 4.7 Laplace Transforms -- 4.7.1 Introduction -- 4.7.2 Laplace Transform and Inverse Laplace Transform -- 4.7.3 Laplace Transforms of the Components of Partial Differential Equations -- 4.8 Fourier Transforms -- 4.8.1 Introduction -- 4.8.2 Fourier Cosine Transform -- 4.8.3 Fourier Sine Transform -- 5. Complex Variables -- 5.1 Complex Numbers -- 5.1.1 Definition of a Complex Number -- 5.1.2 Complex Numbers and Argand Diagram -- 5.1.3 Euler's Theorem -- 5.1.4 Polar Form and the Argument of Complex Numbers -- 5.1.5 The Reciprocal of a Complex Number -- 5.1.6 Natural Logarithms of Complex Numbers -- 5.1.7 Trigonometric and Hyperbolic Function Relationships -- 5.2 Holomorphic Functions -- 5.2.1 Definition of a Holomorphic Function -- 5.2.2 The Requirements of the Holomorphic Functions -- 5.3 Conjugate Functions -- 5.3.1 Definition of a Conjugate Function -- 5.3.2 Two-Dimensional Forms of the Laplace Differential Equation -- 5.3.3 Orthogonal Family of Curves -- 5.4 Complex Differential Operators -- 5.4.1 Introduction -- 5.4.2 The Complex Differential of the Two-Dimensional Laplace Differential Equation and Its Solution -- Part C: Ideal Fluids -- 6. Kinematics of Ideal Fluids Motion -- 6.1 Introduction -- 6.2 The Velocity of a Fluid Particle and Its Visualized Features -- 6.2.1 Introduction -- 6.2.2 Fluid Velocity Field -- 6.2.3 Streamlines, Streamtubes, Pathlines, and Streaklines -- 6.3 Derivation of the Kinematics Equation for a Compressible Ideal Fluid -- 6.3.1 Total Derivative Method -- 6.3.2 Taylor Series Method -- 6.4 Kinematics Equation for an Incompressible Ideal Fluid -- 6.4.1 Vector Form -- 6.4.2 Cartesian Coordinates Form -- 6.5 Acceleration Equations of a Fluid Particle in the Cartesian Coordinates -- 6.6 Other Forms of the Acceleration Equations -- 6.6.1 Material Derivative
6.7 Material Derivative Examples for Fluid Flow -- 6.7.1 Flow through a Decreasing Cross-Section Pipe -- 6.7.2 Worked Examples for Material Derivative -- 6.8 Derivation of the Continuity Equation Using Vectors -- 6.8.1 Introduction -- 6.8.2 Derivation of the Continuity Equation Using the Gauss Divergence Theorem -- 6.8.3 An Alternative Form for the Continuity Equation -- 6.8.4 Continuity Equation in the Cartesian Coordinates -- 6.8.5 Continuity Equation for Irrotational Motion: Laplace Differential Equation -- 6.9 Derivation of the Continuity Equation in the Cartesian Coordinates for Compressible Fluids -- 6.9.1 Introduction -- 6.9.2 Derivation of the Continuity Equation Using a Rectangular Parallelepiped Fluid Element -- 6.10 Derivation of the Continuity Equation in a Streamtube under Steady Flow Conditions -- 6.10.1 Introduction -- 6.10.2 Continuity Equation for Compressible Fluids -- 6.10.3 Continuity Equation for Incompressible Fluids -- Problems -- 7. Rotational and Irrotational Fluid Flows -- 7.1 Introduction -- 7.2 Line Integrals -- 7.2.1 Definition of Line Integrals -- 7.2.2 Circulation and Application of the Line Integral in Fluid Mechanics -- 7.3 Vorticity for Rotational Fluid Flows -- 7.3.1 Introduction -- 7.3.2 The Conceptual Model for the Rotational Fluid Flow -- 7.3.3 Derivation of the Vorticity Vector Expression for a Rotational Fluid Flow -- 7.4 Inclusion of the Vorticity Expression into the Fluid Kinematics Equation -- 7.4.1 Introduction -- 7.4.2 Derivation of the Fluid Kinematics Equation with the Vorticity -- 7.5 Irrotational Fluid Flows -- 7.5.1 Introduction -- 7.5.2 Derivation of the Conditions for Irrotational Fluid Flows -- Problems -- 8. The Equation of Motion of an Inviscid Fluid -- 8.1 Introduction -- 8.2 Reynolds Transport Theorem -- 8.2.1 Statement of the Reynolds Transport Theorem
8.2.2 Derivation of the Reynolds Transport Theorem -- 8.3 Rate of Change of Linear Momentum -- 8.4 Derivation of the Equation of Motion of an Inviscid Fluid -- 8.4.1 Derivation of the Equation of Motion with Vectors and Gauss Divergence Theorem -- 8.4.2 Derivation of the Equation of Motion in Cartesian Coordinates -- 8.5 The Equation of Motion of an Inviscid Fluid for Conservative Forces and Barotropic Flow -- 8.5.1 Conservative Forces -- 8.5.2 Barotropic Flow and Derivation of Its Equation -- 8.5.3 Fluid Flow Equation under Conservative Forces, Barotropic Flow, and Vorticity Conditions -- 8.5.4 The Equation of Motion under Conservative Forces and Barotropic Flow Conditions -- 8.5.5 Permanence of Vorticity -- 8.6 The Zero Case of Vorticity: Beltrami Flows -- 8.6.1 Introduction -- 8.6.2 Equation of Motion for Beltrami Flows under Solenoidal Flow Conditions -- 8.6.3 Cartesian Coordinates Form of the Beltrami Flows Equation under Solenoidal Flow Conditions -- 8.6.4 Cartesian Coordinates Form of the Beltrami Flows Equation under Conservative Forces, Barotropic Flow, Zero Vorticity, and Solenoidal Flow Conditions: The Pressure Equation -- 8.7 Cartesian Coordinates Forms of the Equation of Motion -- 8.7.1 Equation of Motion in Cartesian Coordinates without the Vorticity Term -- 8.7.2 Equation of Motion in Cartesian Coordinates with the Vorticity Term -- 8.7.3 Evaluation of the Equation of Motion in Cartesian Coordinates Without and With the Vorticity Terms -- 8.8 Equation of Motion under Steady-State Conditions -- 8.8.1 Introduction -- 8.8.2 Equations of Motion for Fluids under Steady-State Conditions -- 8.9 Rate of Change of Circulation -- 8.9.1 Introduction -- 8.9.2 Time Derivative of Circulation and Inclusion the Curl of Acceleration -- 8.9.3 Expressing the Curl of Acceleration in Terms of Pressure and Density
8.9.4 Geometrical Meanings of the p(x, y, z) = constant and 1/p(x, y, z) = constant Surfaces
ISBN:
9781003457442 ( ebk)
1-003-85730-2
1-003-85725-6
1-003-45744-4
Materia:
Enlace a formato físico adicional:
1-03-260078-0

Localizaciones

Filtrar listado de centros

No hay coincidencias

Préstamo interbibliotecario

Seleccione el centro al que pertenece para solicitar la petición de préstamo de este documento.

Filtrar listado de centros

No hay coincidencias