Acceder a contenido central

REBIUN - ODA

Detalle del título

Descripción del título

cover Algebraic theories : a cate...
Algebraic theories : a categorical introduction to general algebra
Cambridge University Press 2010

"Algebraic theories, introduced as a concept in the 1960s, have been a fundamental step towards a categorical view of general algebra. Moreover, they have proved very useful in various areas of mathematics and computer science. This carefully developed book gives a systematic introduction to algebra based on algebraic theories that is accessible to both graduate students and researchers. It will facilitate interactions of general algebra, category theory and computer science. A central concept is that of sifted colimits - that is, those commuting with finite products in sets. The authors prove the duality between algebraic categories and algebraic theories and discuss Morita equivalence between algebraic theories. They also pay special attention to one-sorted algebraic theories and the corresponding concrete algebraic categories over sets, and to S-sorted algebraic theories, which are important in program semantics. The final chapter is devoted to finitary localizations of algebraic categories, a recent research area"--

Monografía

Más detalles del título

Cambiar el formato de visualización

Más detalles

Título:
Algebraic theories : a categorical introduction to general algebra / J. Adamek, J. Rosicky, E. M. Vitale ; with a foreword by F. W. Lawvere
Editorial:
New York : Cambridge University Press, 2010
Descripción física:
1 online resource (xvii, 249 pages) : digital, PDF file(s)
Mención de serie:
Cambridge tracts in mathematics ; v. 184
Nota general:
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Bibliografía:
Includes bibliographical references and index
Contenido:
Machine generated contents note: Foreword F. W. Lawvere; Introduction; Preliminaries; Part I. Abstract Algebraic Categories: 1. Algebraic theories and algebraic categories; 2. Sifted and filtered colimits; 3. Reflexive coequalizers; 4. Algebraic categories as free completions; 5. Properties of algebras; 6. A characterization of algebraic categories; 7. From filtered to sifted; 8. Canonical theories; 9. Algebraic functors; 10. Birkhoff's variety theorem; Part II. Concrete Algebraic Categories: 11. One-sorted algebraic categories; 12. Algebras for an endofunctor; 13. Equational categories of [SIGMA]-algebras; 14. S-sorted algebraic categories; Part III. Selected Topics: 15. Morita equivalence; 16. Free exact categories; 17. Exact completion and reflexive-coequalizer completion; 18. Finitary localizations of algebraic categories; A. Monads; B. Abelian categories; C. More about dualities for one-sorted algebraic categories; Summary; Bibliography; Index
Lengua:
English
ISBN:
1-107-21307-X
1-282-96697-9
9786612966972
0-511-99144-4
0-511-99045-6
0-511-99243-2
0-511-98864-8
0-511-76075-2
0-511-98684-X
Materia:
Autores:
Enlace a formato físico adicional:
0-521-11922-7
Punto acceso adicional serie-Título:
Cambridge tracts in mathematics ; 184

Préstamo interbibliotecario

Seleccione el centro al que pertenece para solicitar la petición de préstamo de este documento.

Filtrar listado de centros

No hay coincidencias

Relacionados

Misma Editorial y Colección