

Power geometry in algebraic and differential equations [

Briuno, Aleksandr Dmitrievich

Elsevier, 2000

Monografía

The geometry of power exponents includes the Newton polyhedron, normal cones of its faces, power and logarithmic transformations. On the basis of the geometry universal algorithms for simplifications of systems of nonlinear equations (algebraic, ordinary differential and partial differential) were developed. The algorithms form a new calculus which allows to make local and asymptotical analysis of solutions to those systems. The efficiency of the calculus is demonstrated with regard to several complicated problems from Robotics, Celestial Mechanics, Hydrodynamics and Thermodynamics. The calculus also gives classical results obtained earlier intuitively and is an alternative to Algebraic Geometry, Differential Algebra, Lie group Analysis and Nonstandard Analysis

Título uniforme: Stepennaia geometriia v algebraicheskikh i differentsialnykh uravneniiakh. English

Título: Power geometry in algebraic and differential equations Recurso electrónico] Alexander D. Bruno

Edición: 1st ed

Editorial: Amsterdam New York Elsevier 2000

Descripción física: ix, 385 p. ill. 23 cm

Tipo Audiovisual: Geometry, Plane Differential-algebraic equations

Mención de serie: North-Holland mathematical library v. 57

Bibliografía: Includes bibliographical references (pages 359-381) and index

Contenido: Preface. Introduction. The linear inequalitites. Singularities of algebraic equations. Hamiltonian truncations. Local analysis of an ODE system. Systems of arbitrary equations. Self-similar solutions. On complexity of problems of Power Geometry. Bibliography. Subject index

Restricciones de acceso: Acceso restringido a los miembros de la UAL

ISBN: 9780444502971 0444502971 9780080539331 0080539335

- Gran Vía, 59 28013 Madrid
- (+34) 91 456 03 60
- informa@baratz.es