

The fly neuromuscular junction [structure and function /

Budnik, Vivian

Elsevier/Academic Press, c2006

Electronic books

Monografía

The Drosophila larval neuromuscular junction (NMJ) has become one of the most powerful model systems to ask key neurobiological questions. This synapse is unparalleled by its accessibility, its simplicity, and the ability to manipulate genes important for synapse development and function. Its synapses have properties shared by many organisms including humans. The vast majority of genes that when mutated cause congenital disorders of the nervous system in humans, are present in the fruit fly genome, and fly models of human disorders are available. Thus, this preparation is a powerful to

Título: The fly neuromuscular junction electronic resource] structure and function edited by Vivian Budnik

Edición: 2nd ed. Catalina Ruiz-Can ada

Editorial: San Diego, Calif. London Elsevier/Academic Press c2006

Descripción física: 1 online resource (421 p.)

Variantes del título: International Review of Neurobiology Fly Neuromuscular Junction, The International Review of Neurobiology, Volume 75C The Fly Neuromuscular Junction: Structure and Function Second Edition , Volume 75C

Mención de serie: International review of neurobiology v. 75

Nota general: Description based upon print version of record

Bibliografía: Includes bibliographical references and index

Contenido: Cover; Copyright page; Table of contents; Contributors; Preface; Chapter B. Attractant Molecules During Synaptic Target RecognitionC. Repulsive Molecules During Synaptic Target Recognition; VII. Dynamics of the Target Muscle; VIII. Conclusions; Acknowledgment; References; Chapter 2: Development and Structure of Motoneurons; I. Introduction; II. Development of Motoneurons; A. Early Specification Programs; B. Motoneuron Subclasses: Specification of Ventrally Versus Dorsally Projecting Motoneurons; C. Ventrally Projecting Motoneurons; D. Dorsally Projecting Motoneurons; E. Motoneuron Specification Programs Are Conserved F.

Specification of Unique Motoneuron IdentitiesG. From Motoneuron Determinants to Axon Trajectories; III. Class-Specific Patterns of Axonal Trajectories; A. Subsets Within the Class of Ventrally Projecting Motoneurons; B. A Hierarchy of Nerve Branching; IV. Dendritic Development; A. Dendrites: Conservation Between Insects and Vertebrates; B. Organization of the Motor System: Coordinated Patterning of Pre-and Postsynaptic Terminals; C. Regulation of Dendritic Patterning; V. Conclusions; Acknowledgment; References; Chapter 3: The Development of The Drosophila Larval Body Wall Muscles I. IntroductionII. Muscle Specification; III. Muscle Identity; IV. Myoblast Fusion; V. Muscle Attachment; VI. Concluding Remarks; Acknowledgment; References; Chapter 4: Organization of the Efferent System and Structure of Neuromuscular Junctions In Drosophila; I. Introduction; II. General Organization of the Efferent System; III. Neuromodulation? The Organization of Type-II and Type-III Terminals; IV. Synaptic Junctions: The Development, Morphology, and Classification of Type-I Terminals; V. Ultrastructure of Neuromuscular Synapses; VI. Conclusions; Acknowledgment; References Chapter 5: Development of Motoneuron Electrical Properties and Motor OutputI. Introduction; II. Development of Electrical Properties in Motoneurons: III. Development of Synaptic Connectivity: IV. Regulation of Membrane Excitability: V. Regulation of Synaptic Connectivity; A. Role of the Cell Adhesion Molecule FasciclinII; B. TGF-beta Retrograde Signaling Strengthens Both Central and Peripheral Synapses; VI. Summary; Acknowledgment; References; Chapter 6: Transmitter Release at the Neuromuscular Junction; I. Introduction; II. Physiological Properties of Transmitter Release III. Experimental Advantages and Limitations of the Fly NMJ

Lengua: English

ISBN: 1-280-75159-2 9786610751594 0-08-046913-2

Materia: Drosophila melanogaster- Nervous system Fruit-flies- Nervous system Myoneural junction Drosophila

melanogaster- Development Fruit-flies- Development

Autores: Budnik, Vivian Ruiz-Cãnada, Catalina

Título preferido: Neuromuscular junctions in Drosophila

Enlace a serie principal: International review of neurobiology (CKB)954926958890 (DLC)2011200620 (OCoLC)

 $61847738\ 2162\text{-}5514$

Enlace a formato físico adicional: 0-12-373613-7

Punto acceso adicional serie-Título: International review of neurobiology v. 75

Baratz Innovación Documental

- Gran Vía, 59 28013 Madrid
- (+34) 91 456 03 60
- informa@baratz.es