
Svelte with test-driven

development : advance your

skills and write effective

automated tests with Vitest,

Playwright, and Cucumber.js /

Irvine, Daniel,

author

Monografía

Build robust and performant applications by developing SvelteKit applications using automated testing and

TDD techniques, including unit and end-to-end testing, custom matchers, component mocking, and

authentication Purchase of the print or Kindle book includes a free PDF eBook Key Features Understand and

master the test-driven development (TDD) workflow Explore the principles of unit testing with Vitest and end-

to-end testing using Playwright and Cucumber.js Leverage practical examples of unit tests covering a range of

SvelteKit framework features Book Description Svelte is a popular front-end framework used for its focus on

performance and user-friendliness, and test-driven development (TDD) is a powerful approach that helps in

creating automated tests before writing code. By combining them, you can create efficient, maintainable code

for modern applications. Svelte with Test-Driven Development will help you learn effective automated testing

practices to build and maintain Svelte applications. In the first part of the book, you'll find a guided

walkthrough on building a SvelteKit application using the TDD workflow. You'll uncover the main concepts

for writing effective unit test cases and practical advice for developing solid, maintainable test suites that can

speed up application development while remaining effective as the application evolves. In the next part of the

book, you'll focus on refactoring and advanced test techniques, such as using component mocks and writing

BDD-style tests with the Cucumber.js framework. In the final part of the book, you'll explore how to test

complex application and framework features, including authentication, Svelte stores, and service workers. By

the end of this book, you'll be well-equipped to build test-driven Svelte applications by employing theoretical

and practical knowledge. What you will learn Create clear and concise Vitest unit tests helping the

implementation of Svelte components Use Playwright and Cucumber.js to develop end-to-end tests that

simulate user interactions and test the functionality of your application Leverage component mocks to isolate

and test individual components Write unit tests for a range of Svelte framework features Explore effective

refactoring techniques to keep your Svelte application code and test suites clean Build high-quality Svelte

applications that are well-tested, performant, and resilient to changes Who this book is for This book is an

essential guide for Svelte developers seeking to enhance their development process by learning the TDD

workflow and its application. Whether you are an experienced developer or new to automated testing, this book

helps you gain a practical approach to improving your workflow. The examples are written in JavaScript,

making them accessible to all developers, including TypeScript developers

https://rebiunoda.pro.baratznet.cloud:28443/OpacDiscovery/public/catalog/detail/b2FpOmNlbGVicmF0aW9uOmVzLmJhcmF0ei5yZW4vMzQzMTAyOTA

Título: Svelte with test-driven development advance your skills and write effective automated tests with Vitest,

Playwright, and Cucumber.js Daniel Irvine

Edición: 1st ed

Editorial: Birmingham, England Packt Publishing Ltd. [2023] 2023

Descripción física: 1 online resource (250 pages)

Nota general: Includes index

Contenido: Cover -- Title Page -- Copyright and Credits -- Contributors -- Table of Contents -- Preface -- Part 1:

Learning the TDD Cycle -- Chapter 1: Setting up for Testing -- Technical requirements -- Creating a new SvelteKit

project -- Installing and running Playwright -- Running Vitest -- Preparing your development environment for

frequent unit testing -- Choosing your editor -- Creating a shell alias -- Changing the test runner to report each test

name -- Watching the test fail -- Configuring support for Svelte component tests -- Installing jsdom and testing

library helpers -- Writing a test for the DOM -- Writing a first Svelte component test -- Ensuring the DOM is

cleared after each test run -- Restoring mocks automatically -- Optional configuration -- Configuring Prettier's print

width -- Reducing the tab width in the Terminal -- Summary -- Chapter 2: Introducing the Red-Green-Refactor

Workflow -- Technical requirements -- Understanding the Red-Green-Refactor workflow -- Thinking ahead with

some up-front design -- The Birthdays application -- Writing a failing test -- Making it pass -- Repeating the

process -- Refactoring the tests -- Cleaning up warnings -- Adding a third test to triangulate -- Adding styles to the

component -- Summary -- Chapter 3: Loading Data into a Route -- Technical requirements -- Using Playwright to

specify end-to-end behavior -- Writing the test and watching it fail -- Understanding the difference between Vitest

tests and Playwright tests -- Deciding an approach to make the end-to-end test pass -- Test-driving the load function

-- Test-driving the page component -- Summary -- Chapter 4: Saving Form Data -- Technical requirements --

Adding a Playwright test for data input -- Test-driving a SvelteKit form -- Adding the form component to the page

 component -- Test-driving a SvelteKit form action Building a factory for the FormData objects -- Building a Vitest

test suite for the form action -- Summary -- Chapter 5: Validating Form Data -- Technical requirements -- Adding a

Playwright test for validating form errors -- Displaying SvelteKit form errors -- Passing the form data through the

page component -- Validating data in the form action -- Clearing the data store between tests -- Summary --

Chapter 6: Editing Form Data -- Technical requirements -- Planning the path ahead -- Adding a Playwright test for

editing form data -- Evolving the repository to allow ID lookup -- Updating the form action to handle edits --

Replacing items in the repository -- Protecting against unknown identifiers -- Updating return values to include

identifiers -- Updating the list page with a new edit mode -- Adding a toggle mode to the page -- Summary -- Part

2: Refactoring Tests and Application Code -- Chapter 7: Tidying up Test Suites -- Technical requirements -- Using

page object models in Playwright tests -- Extracting an action helper -- Extracting a factory method for creating

data objects -- Summary -- Chapter 8: Creating Matchers to Simplify Tests -- Technical requirements -- Test-

driving the pass or failure of an expectation -- Understanding matcher structure -- Testing a matcher -- Writing the

toBeUnprocessableEntity matcher -- Providing extra information in failure messages -- Implementing the negated

matcher -- Updating existing tests to use the matcher -- Summary -- Chapter 9: Extracting Logic Out of the

Framework -- Technical requirements -- Migrating tests with a test todo list -- Porting tests from the form action --

Duplicating form validation behavior in the repository -- Extracting common methods -- Summary -- Chapter 10:

 Test-Driving API Endpoints -- Technical requirements -- Creating a service test with Playwright Adding an API

endpoint for retrieving data -- Adding an API endpoint for saving data -- Adding an API endpoint for updating data

-- Summary -- Chapter 11: Replacing Behavior with a Side-By-Side Implementation -- Technical requirements --

Updating the route loader to use the API -- Updating the page form action to use the API -- Using a server hook to

seed sample data -- Summary -- Chapter 12: Using Component Mocks to Clarify Tests -- Technical requirements --

Avoiding component mocks -- Avoiding overtesting using TDD -- Using hand-rolled component stubs --

Rendering all props within a component stub -- Checking the ordering of component instances -- Dealing with

complex props -- Dispatching component events -- Using a component mock library -- Installing the library --

Writing tests using the componentDouble function -- Summary -- Chapter 13: Adding Cucumber Tests -- Technical

requirements -- Creating the feature file -- Setting up a Playwright world object -- Implementing the step definitions

-- Summary -- Part 3: Testing SvelteKit Features -- Chapter 14: Testing Authentication -- Technical requirements --

Testing authentication with Playwright -- Creating an auth profile for dev and test modes -- Writing tests for login

-- Updating existing tests to authenticate the user -- Testing authentication with Vitest -- Defining a session factory

-- Updating existing tests for page load functions -- Updating existing tests for form actions -- Summary -- Chapter

15: Test-Driving Svelte Stores -- Technical requirements -- Designing a store for birthdays -- Writing tests for

reading store values -- Writing tests for updating store values -- Summary -- Chapter 16: Test-Driving Service

Workers -- Technical requirements -- Adding a Playwright test for offline access -- Implementing the service

worker -- Summary -- Index -- Other Books You May Enjoy

ISBN: 1-83763-095-X

Materia: Application software- Testing Automation Automatic test equipment Computer software- Testing

Enlace a formato físico adicional: Print version Irvine, Daniel. Svelte with Test-Driven Development

Birmingham : Packt Publishing, Limited,c2023 9781837638338

Baratz Innovación Documental

Gran Vía, 59 28013 Madrid

(+34) 91 456 03 60

informa@baratz.es

