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Build robust and performant applications by developing SvelteKit applications using automated testing and

TDD techniques, including unit and end-to-end testing, custom matchers, component mocking, and

authentication Purchase of the print or Kindle book includes a free PDF eBook Key Features Understand and

master the test-driven development (TDD) workflow Explore the principles of unit testing with Vitest and end-

to-end testing using Playwright and Cucumber.js Leverage practical examples of unit tests covering a range of

SvelteKit framework features Book Description Svelte is a popular front-end framework used for its focus on

performance and user-friendliness, and test-driven development (TDD) is a powerful approach that helps in

creating automated tests before writing code. By combining them, you can create efficient, maintainable code

for modern applications. Svelte with Test-Driven Development will help you learn effective automated testing

practices to build and maintain Svelte applications. In the first part of the book, you'll find a guided

walkthrough on building a SvelteKit application using the TDD workflow. You'll uncover the main concepts

for writing effective unit test cases and practical advice for developing solid, maintainable test suites that can

speed up application development while remaining effective as the application evolves. In the next part of the

book, you'll focus on refactoring and advanced test techniques, such as using component mocks and writing

BDD-style tests with the Cucumber.js framework. In the final part of the book, you'll explore how to test

complex application and framework features, including authentication, Svelte stores, and service workers. By

the end of this book, you'll be well-equipped to build test-driven Svelte applications by employing theoretical

and practical knowledge. What you will learn Create clear and concise Vitest unit tests helping the

implementation of Svelte components Use Playwright and Cucumber.js to develop end-to-end tests that

simulate user interactions and test the functionality of your application Leverage component mocks to isolate

and test individual components Write unit tests for a range of Svelte framework features Explore effective

refactoring techniques to keep your Svelte application code and test suites clean Build high-quality Svelte

applications that are well-tested, performant, and resilient to changes Who this book is for This book is an

essential guide for Svelte developers seeking to enhance their development process by learning the TDD

workflow and its application. Whether you are an experienced developer or new to automated testing, this book

helps you gain a practical approach to improving your workflow. The examples are written in JavaScript,

making them accessible to all developers, including TypeScript developers
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