

Nonstandard analysis and its applications /

Cutland, Nigel

Cambridge University Press,
1988

Conference papers and proceedings.

Monografía

This textbook is an introduction to non-standard analysis and to its many applications. Non standard analysis (NSA) is a subject of great research interest both in its own right and as a tool for answering questions in subjects such as functional analysis, probability, mathematical physics and topology. The book arises from a conference held in July 1986 at the University of Hull which was designed to provide both an introduction to the subject through introductory lectures, and surveys of the state of research. The first part of the book is devoted to the introductory lectures and the second part consists of presentations of applications of NSA to dynamical systems, topology, automata and orderings on words, the non- linear Boltzmann equation and integration on non-standard hulls of vector lattices. One of the book's attractions is that a standard notation is used throughout so the underlying theory is easily applied in a number of different settings. Consequently this book will be ideal for graduate students and research mathematicians coming to the subject for the first time and it will provide an attractive and stimulating account of the subject

<https://rebiunoda.pro.baratznet.cloud:28443/OpacDiscovery/public/catalog/detail/b2FpOmNlbGVicmF0aW9uOmVzLmJhcmF0ei5yZW4vMzk0MjU4MDE>

Título: Nonstandard analysis and its applications edited by Nigel Cutland

Editorial: Cambridge [England] New York Cambridge University Press 1988

Descripción física: 1 online resource (xiii, 346 pages)

Mención de serie: London Mathematical Society student texts 10

Nota general: Papers presented at a conference held at the University of Hull in 1986

Bibliografía: Includes bibliographical references and index

Contenido: Cover; Series Page; Title; Copyright; CONTENTS; PREFACE; CONTRIBUTORS; AN INVITATION TO NONSTANDARD ANALYSIS; INTRODUCTION; I. A SET OF HYPERREALS; I.1 CONSTRUCTION OF *R ; I.1.1 Example; I.1.2 Definition; I.1.3 Definition; I.1.4 Example; I.1.5 Definition; I.1.6 Proposition; I.1.7 Definition; I.1.8 Lemma; I.2 INTERNAL SETS AND FUNCTIONS; I.2.1 Definition; I.2.2 Example; I.2.3 Proposition; I.2.4 Corollary; I.2.5 Theorem (x1-saturation); I.2.6 Corollary; I.2.7 Proposition; I.2.8 Definition; I.2.9 Proposition; I.2.10 Definition; I.2.11 Exaaple; I.2.12 Proposition; I.3 INFINITESIMAL CALCULUS I.3.1 PropositionI. 3.2 Proposition; I.3.3 Proposition; I.3.4 Corollary; I.3.5 Proposition; I.3.6 Corollary; I.3.7 Theorem; II. SUPERSTRUCTURES AND LOEB MEASURES; II. 1 SUPERSTRUCTURES; II.

1.1 Definition; II. 1.2 Definition; II. 1.3 Lemma; II. 1.4 Proposition; II. 2 LOEB MEASURES; II. 2.1 Example; II. 2.2 Definition; II. 2.3 Lemma; II. 2.4 Lemma; II. 2.5 Theorem; II. 2.6 Example; II. 2.7 Example; II. 2.8 Lemma; II. 2.10 Theorem; II. 2.11 Theorem; II. 2.12 Corollary; II. 3 BROWNIAN MOTION; II. 3.1 Definition; II. 3.2 Lemma; II. 3.3 Lemma; II. 3.4 Lemma; II. 3.4 Lemma; II. 3.6 Theorem III. SATURATION AND TOPOLOGY III. 1 BEYOND x_1 -SATURATION; III. 1.1 Definition; III. 1.2 Theorem; III. 1.3 Theorem; III. 1.4 Lemma; III. 2 GENERAL TOPOLOGY; III. 2.1 Proposition; III. 2.2 Proposition; III. 2.3 Proposition; III. 2.4 Proposition; III. 2.5 Example; III. 2.6 Proposition; III. 2.7 Tychonov's Theorem; III. 2.8 Alaoglu's Theorem; III. 2.9 Ascoli's Theorem; III. 2.10 Example; III. 3 COMPLETIONS, COMPACTIFICATIONS, AND NONSTANDARD HULLS; III. 3.1 Proposition; III. 3.2 Corollary; III. 3.3 Proposition; III. 3.4 Example; III. 3.5 Example; III. 3.6 Proposition; III. 3.7 Corollary; III. 3.8 Example III. 3.9 Proposition IV. THE TRANSFER PRINCIPLE; IV. 1 THE LANGUAGES $L(V(S))$ AND $L^*(V(S))$; IV. 1.1 Definition; IV. 1.2 Example; IV. 2 LOS' THEOREM AND THE TRANSFER PRINCIPLE; IV. 2.1 Definition; IV. 2.2 Lemma; IV. 2.3 Los' Theorem; IV. 2.4 Transfer Principle; IV. 2.5 Internal Definition Principle; IV. 3 AXIOMATIC NONSTANDARD ANALYSIS; APPENDIX. ULTRAFILTERS; A.1 Proposition; A.2 Lemma; A.3 Lemma; A.4 Theorem; NOTES; REFERENCES; INFINITESIMALS IN PROBABILITY THEORY; 1. THE HYPERFINITE TIME LINE; Definition; 1.2 Proposition; 1.3 Corollary; 1.4 Theorem (Anderson (1982)) 2. UNIVERSAL AND HOMOGENEOUS PROBABILITY SPACES 2.1 Proposition; 2.2 Proposition; Definition; Definition; 2.3 Theorem (Keisler (1984)); 3. STOCHASTIC PROCESSES; 3.1 Lemma; 3.2 Proposition; 3.3 Proposition; 4. PRODUCTS OF LOEB SPACES; 4.1 Example; 4.2 Fubini Theorem for Loeb Measures (Keisler (1984)); 4.3 Theorem (Keisler (1984)); 5. LIFTINGS OF STOCHASTIC PROCESSES; Definition; 5.1 Proposition; Definition; 5.2 Lemma; Definition; 5.3 Proposition; 5.4 Example; 5.5 Example; 5.6 Example; 6. ADAPTED PROBABILITY SPACES; 6.1 Proposition; Definition; Definition; 6.2 Theorem; 7. ADAPTED DISTRIBUTIONS

Copyright/Depósito Legal: 846492891

ISBN: 9781139172110 electronic bk.) 1139172115 electronic bk.) 9781107087934 electronic bk.) 1107087937 electronic bk.) 052135109X 9780521351096 0521359473 9780521359474

Materia: Nonstandard mathematical analysis- Congresses Nonstandard mathematical analysis- Congresses Analyse mathématique non standard- Congrès Analyse mathématique non standard- Congrès MATHEMATICS- Applied. Nonstandard mathematical analysis. Nonstandard-Analysis. Analyse mathématique non standard.

Autores: Cutland, Nigel

Enlace a formato físico adicional: Print version Nonstandard analysis and its applications. Cambridge, [England] ; New York : Cambridge University Press, 1988 052135109X (DLC) 88016194 (OCOLOC) 18013779

Punto acceso adicional serie-Título: London Mathematical Society student texts 10

Baratz Innovación Documental

- Gran Vía, 59 28013 Madrid
- (+34) 91 456 03 60
- informa@baratz.es