Descripción del título

Elliptic equations of critical Sobolev growth have been the target of investigation for decades because they have proved to be of great importance in analysis, geometry, and physics. The equations studied here are of the well-known Yamabe type. They involve Schrodinger operators on the left hand side and a critical nonlinearity on the right hand side. A significant development in the study of such equations occurred in the 1980s. It was discovered that the sequence splits into a solution of the limit equation--a finite sum of bubbles--and a rest that converges strongly to zero in the Sobolev s.
Monografía
monografia Rebiun25238609 https://catalogo.rebiun.org/rebiun/record/Rebiun25238609 m o d cr cnu---unuuu 090601s2004 nju ob 000 0 eng d 2003064801 646805761 773224695 961492791 962572858 1162038608 9781400826162 electronic bk.) 1400826160 electronic bk.) 0691119538 pbk. ; alk. paper) 9780691119533 pbk.) 1282087231 9781282087231 1282935372 9781282935372 9786612935374 6612935375 9786612087233 6612087234 10.1515/9781400826162 doi CL0500000121 Safari Books Online N$T eng pn N$T OCLCQ EBLCP E7B IDEBK OCLCQ MHW OCLCQ UMI YDXCP REDDC OCLCQ DEBSZ JSTOR OCLCF OCLCQ COO AZK JBG AGLDB UIU MOR OTZ ZCU MERUC OCLCQ IOG U3W EZ9 STF WRM VTS CEF NRAMU CRU ICG OCLCQ INT VT2 OCLCQ LVT TKN OCLCQ UAB DKC OCLCQ UKAHL OCLCQ HS0 OCLCQ K6U OCLCQ UKCRE VLY MAT 007020 bisacsh MAT034000 bisacsh Druet, Olivier 1976-) Blow-up theory for elliptic PDEs in Riemannian geometry Olivier Druet, Emmanuel Hebey, Frédéric Robert Princeton, N.J. Princeton University Press ©2004 Princeton, N.J. Princeton, N.J. Princeton University Press 1 online resource (viii, 218 pages) 1 online resource (viii, 218 pages) Text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Mathematical notes Includes bibliographical references (pages 213-218) Preface; Chapter 1. Background Material; Chapter 2. The Model Equations; Chapter 3. Blow-up Theory in Sobolev Spaces; Chapter 4. Exhaustion and Weak Pointwise Estimates; Chapter 5. Asymptotics When the Energy Is of Minimal Type; Chapter 6. Asymptotics When the Energy Is Arbitrary; Appendix A. The Green's Function on Compact Manifolds; Appendix B. Coercivity Is a Necessary Condition; Bibliography Elliptic equations of critical Sobolev growth have been the target of investigation for decades because they have proved to be of great importance in analysis, geometry, and physics. The equations studied here are of the well-known Yamabe type. They involve Schrodinger operators on the left hand side and a critical nonlinearity on the right hand side. A significant development in the study of such equations occurred in the 1980s. It was discovered that the sequence splits into a solution of the limit equation--a finite sum of bubbles--and a rest that converges strongly to zero in the Sobolev s. In English Calculus of variations Differential equations, Nonlinear Geometry, Riemannian Calcul des variations Équations différentielles non linéaires Riemann, Géométrie de MATHEMATICS- Differential Equations- Partial MATHEMATICS- Mathematical Analysis Calculus of variations Differential equations, Nonlinear Geometry, Riemannian Riemann-metriek Variatierekening Differentiaalvergelijkingen Electronic books Hebey, Emmanuel 1964-) Robert, Frédéric 1974-) Print version Druet, Olivier, 1976-. Blow-up theory for elliptic PDEs in Riemannian geometry. Princeton, N.J. : Princeton University Press, ©2004 0691119538 9780691119533 (DLC) 2003064801 (OCoLC)53485152 Mathematical notes (Princeton University Press)