Acceder a contenido central

REBIUN - ODA

Detalle del título

Descripción del título

cover The disc embedding theorem ...
The disc embedding theorem

This text contains the first thorough and approachable exposition of Freedman's proof of the disc embedding theorem

Instructional and educational works.

Monografía

Más detalles del título

Cambiar el formato de visualización

Más detalles

Título:
The disc embedding theorem / editors, Stefan Behrens [et al.]
Edición:
First edition
Editorial:
Oxford, UK : Oxford University Press, [2021]
2021
Descripción física:
1 online resource (xvii, 473 pages) : illustrations (black and white, and colour)
Mención de serie:
Oxford scholarship online
Nota general:
This edition also issued in print: 2021
Bibliografía:
Includes bibliographical references and index
Contenido:
Cover -- The Disc Embedding Theorem -- Copyright -- Preface -- The Origin of This Book -- Casson Towers -- Differences -- Seminar Organization -- Credit -- Contents -- List of Figures -- 1: Context for the Disc Embedding Theorem -- 1.1 Before the Disc Embedding Theorem -- 1.1.1 High-dimensional Surgery Theory -- 1.1.2 Attempting 4-dimensional Surgery -- 1.1.3 Attempting to Prove the s-cobordism Theorem -- 1.2 The Whitney Move in Dimension Four -- 1.3 Casson's Insight: Geometric Duals -- 1.3.1 Surgery and Geometric Duals -- 1.3.2 The s-cobordism Theorem and Geometric Duals -- 1.4 Casson Handles -- 1.5 The Disc Embedding Theorem -- 1.6 After the Disc Embedding Theorem -- 1.6.1 Foundational Results -- 1.6.2 Classification Results -- 1.6.3 Knot Theory Results -- 2: Outline of the Upcoming Proof -- 2.1 Preparation -- 2.2 Building Skyscrapers -- 2.3 Skyscrapers Are Standard -- 2.4 Reader's Guide -- Part I: Decomposition Space Theory -- 3: The Schoenflies Theorem after Mazur, Morse, and Brown -- 3.1 Mazur's Theorem -- 3.2 Morse's Theorem -- 3.3 Shrinking Cellular Sets -- 3.4 Brown's Proof of the Schoenflies Theorem -- 4: Decomposition Space Theory and the Bing Shrinking Criterion -- 4.1 The Bing Shrinking Criterion -- 4.2 Decompositions -- 4.3 Upper Semi-continuous Decompositions -- 4.4 Shrinkability of Decompositions -- 5: The Alexander Gored Ball and the Bing Decomposition -- 5.1 Three Descriptions of the Alexander Gored Ball -- 5.1.1 An Intersection of 3-balls in D3 -- 5.1.2 A (3-dimensional) Grope -- 5.1.3 A Decomposition Space -- 5.2 The Bing Decomposition: The First Ever Shrink -- 6: A Decomposition That Does Not Shrink -- 7: The Whitehead Decomposition -- 7.1 The Whitehead Decomposition Does Not Shrink -- 7.2 The Space S3/W Is a Manifold Factor -- 8: Mixed Bing-Whitehead Decompositions -- 8.1 Toroidal Decompositions
8.2 Disc Replicating Functions -- 8.3 Shrinking of Toroidal Decompositions -- 8.4 Computing the Disc Replicating Function -- 9: Shrinking Starlike Sets -- 9.1 Null Collections and Starlike Sets -- 9.2 Shrinking Null, Recursively Starlike-equivalent Decompositions -- 9.3 Literature Review -- 10: The Ball to Ball Theorem -- 10.1 The Main Idea of the Proof -- 10.2 Relations -- 10.3 Admissible Diagrams and the Main Lemma -- 10.4 Proof of the Ball to Ball Theorem -- 10.5 The General Position Lemma -- 10.6 The Sphere to Sphere Theorem from the Ball to Ball Theorem -- Part II: Building Skyscrapers -- 11: Intersection Numbers and the Statement of the Disc Embedding Theorem -- 11.1 Immersions -- 11.2 Whitney Moves and Finger Moves -- 11.2.1 Whitney Moves -- 11.2.2 Finger Moves -- 11.3 Intersection and Self-intersection Numbers -- 11.4 Statement of the Disc Embedding Theorem -- 12: Gropes, Towers, and Skyscrapers -- 12.1 Gropes and Towers -- 12.2 Infinite Towers and Skyscrapers -- 13: Picture Camp -- 13.1 Dehn Surgery -- 13.2 Kirby Diagrams -- 13.2.1 Attaching 1-handles -- 13.2.2 Attaching 2-handles -- 13.2.3 Attaching and Tip Regions -- 13.3 Kirby Calculus -- 13.3.1 Handle Slides -- 13.3.2 Handle Cancellation -- 13.3.3 Plumbing -- 13.4 Kirby Diagrams for Generalized Towers -- 13.4.1 Surface Blocks -- 13.4.2 Disc and Cap Blocks -- 13.4.3 Stages -- 13.4.4 Generalized Towers -- 13.5 Bing and Whitehead Doubling -- 13.6 Simplification -- 13.6.1 Bing Doubles -- 13.6.2 Whitehead Doubles -- 13.6.3 Trees Associated with Generalized Towers -- 13.6.4 Kirby Diagrams from Trees -- 13.7 Chapter Summary -- 14: Architecture of Infinite Towers and Skyscrapers -- 14.1 Infinite Towers -- 14.2 Infinite Compactified Towers -- 14.3 Skyscrapers -- 15: Basic Geometric Constructions -- 15.1 The Clifford Torus -- 15.2 Elementary Geometric Techniques -- 15.2.1 Tubing
15.2.2 Boundary Twisting -- 15.2.3 Making Whitney Circles Disjoint -- 15.2.4 Pushing Down Intersections -- 15.2.5 Contraction and Subsequent Pushing Off -- 15.3 Replacing Algebraic Duals with Geometric Duals -- 16: From Immersed Discs to Capped Gropes -- 17: Grope Height Raising and 1-storey Capped Towers -- 17.1 Grope Height Raising -- 17.2 1-storey Capped Towers -- 17.3 Continuation of the Proof of the Disc Embedding Theorem -- 18: Tower Height Raising and Embedding -- 18.1 The Tower Building Permit -- 18.2 The Tower Squeezing Lemma -- 18.3 The Tower and Skyscraper Embedding Theorems -- 18.4 Proof of the Disc Embedding Theorem, Assuming Part IV -- Part III: Interlude -- 19: Good Groups -- 20: The s-cobordism Theorem, the Sphere Embedding Theorem, and the Poincaré Conjecture -- 20.1 The s-cobordism Theorem -- 20.2 The Poincaré Conjecture -- 20.3 The Sphere Embedding Theorem -- 21: The Development of Topological 4-manifold Theory -- 21.1 Results Proven in This Book -- 21.2 Input to the Flowchart -- 21.2.1 Immersion Theory and Smoothing Noncompact, Contractible 4-manifolds -- 21.2.2 Donaldson Theory -- 21.3 Further Results from Freedman's Original Paper -- 21.3.1 The Proper h-cobordism Theorem with Smooth Input -- 21.3.2 Integral Homology 3-spheres Bound Contractible 4-manifolds -- 21.4 Foundational Results Due to Quinn -- 21.4.1 The Controlled h-cobordism Theorem with Smooth Input -- 21.4.2 Handle Straightening -- 21.4.3 The Stable Homeomorphism Theorem -- 21.4.4 The Annulus Theorem and Connected Sum -- 21.4.5 The Sum Stable Smoothing Theorem -- 21.4.6 TOP(4)=O(4)!TOP=O is 5-connected -- 21.4.7 Smoothing Away from a Point -- 21.4.8 Normal Bundles -- 21.4.9 Topological Transversality and Map Transversality -- 21.4.10 The Immersion Lemma -- 21.4.11 Handle Decompositions of 5-manifolds -- 21.5 Category Preserving Theorems
21.5.1 The Surgery Sequence for Good Groups -- 21.6 Flagship Results -- 21.6.1 Classification of Closed, Simply Connected 4-manifolds -- 21.6.2 The Poincaré Conjecture with Topological Input -- 21.6.3 Alexander Polynomial One Knots Are Slice -- 21.6.4 Slice Knots -- 21.6.5 Exotic R4s -- 21.6.6 Computation of the 4-dimensional Bordism Group -- 22: Surgery Theory and the Classification of Closed, Simply Connected 4-manifolds -- 22.1 The Surgery Sequence -- 22.1.1 Normal Maps -- 22.1.2 L-groups -- 22.1.3 The Surgery Obstruction Map -- 22.1.4 Exactness at the Normal Maps -- 22.1.5 Wall Realization -- 22.1.6 Exactness at the Structure Set -- 22.2 The Surgery Sequence for Manifolds with Boundary -- 22.3 Classification of Closed, Simply Connected 4-manifolds -- 22.3.1 Existence of a 4-manifold -- 22.3.2 Size of the Structure Set -- 22.3.3 Realizing Isometries by Homeomorphisms -- 22.3.4 Other Homeomorphism Classifications of 4-manifolds -- 23: Open Problems -- 23.1 The Disc Embedding Conjecture -- 23.1.1 Standard Slices for Universal Links -- 23.2 The Surgery Conjecture -- 23.2.1 Good Boundary Links -- 23.2.2 Free Slice Discs and the Link Family L1 -- 23.2.3 Free Slice Discs and the Link Family L2 -- 23.2.4 The A-B Slice Problem -- 23.3 The s-cobordism Conjecture -- 23.3.1 Round Handles -- Part IV: Skyscrapers Are Standard -- 24: Replicable Rooms and Boundary Shrinkable Skyscrapers -- 25: The Collar Adding Lemma -- 26: Key Facts about Skyscrapers and Decomposition Space Theory -- 26.1 Ingredients from Part I -- 26.2 Ingredients from Part II -- 27: Skyscrapers Are Standard: An Overview -- 27.1 An Outline of the Strategy -- 27.2 The Strategy in More Detail -- 27.3 Some Things to Keep in Mind -- 28: Skyscrapers Are Standard: The Details -- 28.1 Binary Words and the Cantor Set -- 28.2 The Standard Handle -- 28.3 Embedding the Design in a Skyscraper
28.3.1 The Design Piece for the Empty Word -- 28.3.2 Design Pieces for Finite Binary Words -- 28.3.3 Design Pieces for Infinite Binary Words -- 28.4 Embedding the Design in the Standard Handle -- 28.4.1 Embedding Finite Word Design Pieces in H -- 28.4.2 Embedding Infinite Word Design Pieces in H -- 28.5 From Holes and Gaps to Holes+ and Gaps+ -- 28.6 Shrinking the Complement of the Design -- 28.6.1 The Common Quotient -- 28.6.2 The Map Is Approximable by Homeomorphisms -- 28.6.3 The Map Is Approximable by Homeomorphisms -- Afterword: PC4 at Age 40 -- References -- Index
Audiencia:
Specialized
ISBN:
0-19-187692-5
0-19-257838-3
Materia:
Autores:
Enlace a formato físico adicional:
0-19-884131-0
Punto acceso adicional serie-Título:
Oxford scholarship online

Préstamo interbibliotecario

Seleccione el centro al que pertenece para solicitar la petición de préstamo de este documento.

Filtrar listado de centros

No hay coincidencias

Relacionados

Mismo Género