Acceder a contenido central

REBIUN - ODA

Detalle del título

Descripción del título

cover Nonstandard analysis and it...
Nonstandard analysis and its applications
Cambridge University Press 1988

This textbook is an introduction to non-standard analysis and to its many applications. Non standard analysis (NSA) is a subject of great research interest both in its own right and as a tool for answering questions in subjects such as functional analysis, probability, mathematical physics and topology. The book arises from a conference held in July 1986 at the University of Hull which was designed to provide both an introduction to the subject through introductory lectures, and surveys of the state of research. The first part of the book is devoted to the introductory lectures and the second part consists of presentations of applications of NSA to dynamical systems, topology, automata and orderings on words, the non- linear Boltzmann equation and integration on non-standard hulls of vector lattices. One of the book's attractions is that a standard notation is used throughout so the underlying theory is easily applied in a number of different settings. Consequently this book will be ideal for graduate students and research mathematicians coming to the subject for the first time and it will provide an attractive and stimulating account of the subject

Conference papers and proceedings.

Monografía

Más detalles del título

Cambiar el formato de visualización

Más detalles

Título:
Nonstandard analysis and its applications / edited by Nigel Cutland
Editorial:
Cambridge [England] ; New York : Cambridge University Press, 1988
Descripción física:
1 online resource (xiii, 346 pages)
Mención de serie:
London Mathematical Society student texts ; 10
Nota general:
Papers presented at a conference held at the University of Hull in 1986
Bibliografía:
Includes bibliographical references and index
Contenido:
Cover; Series Page; Title; Copyright; CONTENTS; PREFACE; CONTRIBUTORS; AN INVITATION TO NONSTANDARD ANALYSIS; INTRODUCTION; I.A SET OF HYPERREALS; I.1 CONSTRUCTION OF *R; I.1.1 Example; I.1.2 Definition; I.1.3 Definition; I.1.4 Example; I.1.5 Definition; I.1.6 Proposition; I.1.7 Definition; I.1.8 Lemma; I.2 INTERNAL SETS AND FUNCTIONS; I.2.1 Definition; I. 2.2 Example; I.2.3 Proposition; I.2.4 Corollary; I.2.5 Theorem (x1-saturation); I.2.6 Corollary; I.2.7 Proposition; I.2.8 Definition; I.2.9 Proposition; I.2.10 Definition; I.2.11 Exaaple; I.2.12 Proposition; I.3 INFINITESIMAL CALCULUS
I.3.1 PropositionI. 3.2 Proposition; I.3.3 Proposition; I.3.4 Corollary; I.3.5 Proposition; I.3.6 Corollary; I.3.7 Theorem; II. SUPERSTRUCTURES AND LOEB MEASURES; II. 1 SUPERSTRUCTURES; II. 1.1 Definition; II. 1.2 Definition; II. 1.3 LeMMA; II. 1.4 Proposition; II. 2 LOEB MEASURES; II. 2.1 Exaaple; II. 2.2 Definition; II .2.3 Lemma; II. 2.4 Lemma; II .2.5 Theorem; II. 2.6 Exaaple; II. 2.7 Example; II. 2.8 Lemma; II. 2.10 Theorem; II. 2.11 Theorem; II. 2.12 Corollary; II. 3 BROWNIAN MOTION; II. 3.1 Definition; II. 3.2 Lemma; II. 3.3 Lemma; II. 3.4 Lemma; II. 3.4 Lemma; II. 3.6 Theorem
III. SATURATION AND TOPOLOGYIII. 1 BEYOND x1-SATURATION; III. 1.1 Definition; III. 1.2 Theorem; III. 1.3 TheoreM; III. 1.4 Lemma; III. 2 GENERAL TOPOLOGY; III. 2.1 Proposition; III. 2.2 Proposition; III. 2.3 Proposition; III. 2.4 Proposition; III. 2.5 Example; III. 2.6 Proposition; III. 2.7 Tychonov's Theorem; III. 2.8 Alaoglu's Theorea; III. 2.9 Ascoli's Theorea; III. 2.10 Example; III. 3 COMPLETIONS, COMPACTIFICATIONS. AND NONSTANDARD HULLS; III. 3.1 Proposition; III. 3.2 Corollary; III. 3.3 Proposition; III. 3.4 Example; III. 3.5 Example; III. 3.6 Proposition; III. 3.7 Corollary; III. 3.8 Example
III. 3.9 PropositionIV. THE TRANSFER PRINCIPLE; IV. 1 THE LANGUAGES L(V(S) AND L*(V(S)); IV. 1.1 Definition; IV. I .2 Example; IV. 2 LOS' THEOREM AND THE TRANSFER PRINCIPLE; IV. 2.1 Definition; IV. 2.2. Lemma; IV. 2.3 Los' Theorem; IV. 2.4 Transfer Principle; IV. 2.5 Internal Definition Principle; IV. 3 AXIOMATIC NONSTANDARD ANALYSIS; APPENDIX. ULTRAFILTERS; A.1 Proposition; A.2 Lemma; A.3 Lemma; A.4 Theorem; NOTES; REFERENCES; INFINITESIMALS IN PROBABILITY THEORY; 1. THE HYPERFINITE TIME LINE; Definition; 1.2 Proposition; 1.3 Corollary; 1.4 Theorem (Anderson (1982))
2. UNIVERSAL AND HOMOGENEOUS PROBABILITY SPACES2.1 Proposition; 2.2 Proposition; Definition; Definition; 2.3 Theorem (Keisler (1984)); 3. STOCHASTIC PROCESSES; 3.1 Lemma; 3.2 Proposition; 3.3 Proposition; 4. PRODUCTS OF LOEB SPACES; 4.1 ExampIe; 4.2 Fubini Theorem for Loeb Measures (Keisler(1984)); 4.3 Theorem (Keisler (1984)); 5. LIFTINGS OF STOCHASTIC PROCESSES; Definition; 5.1 Proposition; Definition; 5.2 Lemma; Definition; 5.3 Proposition; 5.4 Example; 5.5 Example; 5.6 Example; 6. ADAPTED PROBABILITY SPACES; 6.1 Proposition; Definition; Definition; 6.2 Theorem; 7. ADAPTED DISTRIBUTIONS
Copyright/Depósito Legal:
846492891
ISBN:
9781139172110 ( electronic bk.)
1139172115 ( electronic bk.)
9781107087934 ( electronic bk.)
1107087937 ( electronic bk.)
052135109X
9780521351096
0521359473
9780521359474
Materia:
Autores:
Enlace a formato físico adicional:
Print version: Nonstandard analysis and its applications., Cambridge, [England] ; New York : Cambridge University Press, 1988 052135109X (DLC) 88016194 (OCoLC)18013779
Punto acceso adicional serie-Título:
London Mathematical Society student texts ; 10

Localizaciones

Filtrar listado de centros

No hay coincidencias

Préstamo interbibliotecario

Seleccione el centro al que pertenece para solicitar la petición de préstamo de este documento.

Filtrar listado de centros

No hay coincidencias

Relacionados

Mismo Género

Misma Editorial y Colección