Acceder a contenido central

REBIUN - ODA

Detalle del título

Descripción del título

cover Data complexity in pattern ...
Data complexity in pattern recognition
Springer ©2006

Machines capable of automatic pattern recognition have many fascinating uses in science and engineering as well as in our daily lives. Algorithms for supervised classification, where one infers a decision boundary from a set of training examples, are at the core of this capability. Tremendous progress has been made in refining such algorithms; yet, automatic learning in many simple tasks in daily life still appears to be far from reach. This book takes a close view of data complexity and its role in shaping the theories and techniques in different disciplines and asks: What is missing from current classification techniques? When the automatic classifiers are not perfect, is it a deficiency of the algorithms by design, or is it a difficulty intrinsic to the classification task? How do we know whether we have exploited to the fullest extent the knowledge embedded in the training data? Data Complexity in Pattern Recognition is unique in its comprehensive coverage and multidisciplinary approach from various methodological and practical perspectives. Researchers and practitioners alike will find this book an insightful reference to learn about the current status of available techniques as well as application areas

Electronic books

Monografía

Más detalles del título

Cambiar el formato de visualización

Más detalles

Título:
Data complexity in pattern recognition / Mitra Basu and Tin Kam Ho (eds)
Editorial:
London : Springer, ©2006
Descripción física:
1 online resource (xv, 300 pages) : illustrations
Mención de serie:
Advanced information and knowledge processing
Bibliografía:
Includes bibliographical references and index
Contenido:
Theory and Methodology -- Measures of Geometrical Complexity in Classification Problems -- Object Representation, Sample Size, and Data Set Complexity -- Measures of Data and Classifier Complexity and the Training Sample Size -- Linear Separability in Descent Procedures for Linear Classifiers -- Data Complexity, Margin-Based Learning, and Popper's Philosophy of Inductive Learning -- Data Complexity and Evolutionary Learning -- Classifier Domains of Competence in Data Complexity Space -- Data Complexity Issues in Grammatical Inference -- Applications -- Simple Statistics for Complex Feature Spaces -- Polynomial Time Complexity Graph Distance Computation for Web Content Mining -- Data Complexity in Clustering Analysis of Gene Microarray Expression Profiles -- Complexity of Magnetic Resonance Spectrum Classification -- Data Complexity in Tropical Cyclone Positioning and Classification -- Human-Computer Interaction for Complex Pattern Recognition Problems -- Complex Image Recognition and Web Security
Lengua:
English
Copyright/Depósito Legal:
122930594 154690404 288148013 320966658 401431901 516040379 613463626 647650378 756423520 880095764 987639169 994766910 1005749453 1035707903 1044270610 1056315567 1058368928 1060827853 1075542153 1078212180
ISBN:
9781846281723
1846281725
9781846281716
1846281717 ( hbk.)
9786611067540
661106754X
Materia:
Autores:
Enlace a formato físico adicional:
Print version: Data complexity in pattern recognition., London : Springer, ©2006 1846281717 9781846281716 (DLC) 2005936159 (OCoLC)62761587
Punto acceso adicional serie-Título:
Advanced information and knowledge processing

Préstamo interbibliotecario

Seleccione el centro al que pertenece para solicitar la petición de préstamo de este documento.

Filtrar listado de centros

No hay coincidencias

Relacionados

Mismo Género

Misma Editorial y Colección