Acceder a contenido central

REBIUN - ODA

Detalle del título

Descripción del título

cover The Laplacian on a Riemanni...
The Laplacian on a Riemannian manifold [an introduction to analysis on manifolds
Cambridge University Press 1997

This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds

Electronic books

Monografía

Más detalles del título

Cambiar el formato de visualización

Más detalles

Título:
The Laplacian on a Riemannian manifold [ electronic resource] :] an introduction to analysis on manifolds / Steven Rosenberg
Editorial:
Cambridge, U.K. ; New York : Cambridge University Press, 1997
Descripción física:
1 online resource (186 p.)
Mención de serie:
London Mathematical Society student texts ; 31
Nota general:
Description based upon print version of record
Bibliografía:
Includes bibliographical references and index
Contenido:
Cover; Title; Copyright; Contents; Introduction; 1 The Laplacian on aRiemannian Manifold; 1.1 Basic Examples; 1.1.1 The Laplacian on S1 and R; 1.1.2 Heat Flow on S1 and R; 1.2 The Laplacian on a Riemannian Manifold; 1.2.1 Riemannian Metrics; 1.2.2 L2 Spaces of Functions and Forms; 1.2.3 The Laplacian on Functions; 1.3 Hodge Theory for Functions and Forms; 1.3.1 Analytic Preliminaries; 1.3.2 The Heat Equation Proof of the Hodge Theorem forFunctions; 1.3.3 The Hodge Theorem for Differential Forms; 1.3.4 Regularity Results; 1.4 De Rham Cohomology; 1.5 The Kernel of the Laplacian on Forms
2 Elements of DifferentialGeometry2.1 Curvature; 2.2 The Levi-Civita Connection and BochnerFormula; 2.2.1 The Levi-Civita Connection; 2.2.2 Weitzenböck Formulas and Garding's Inequality; 2.3 Geodesies; 2.4. The Laplacian in Exponential Coordinates; 3 The Construction of theHeat Kernel; 3.1 Preliminary Results for the Heat Kernel; 3.2 Construction of the Heat Kernel; 3.2.1 Construction of the Parametrix; 3.2.2 The Heat Kernel for Functions; 3.3. The Asymptotics of the Heat Kernel; 3.4 Positivity of the Heat Kernel; 4 The Heat EquationApproach to theAtiyah-Singer IndexTheorem
4.1 The Chern-Gauss-Bonnet Theorem4.1.1 The Heat Equation Approach; 4.1.2 Proof of the Chern-Gauss-Bonnet Theorem; 4.2 The Hirzebruch Signature Theorem and the Atiyah-Singer Index Theorem; 4.2.1 A Survey of Characteristic Forms; 4.2.2 The Hirzebruch Signature Theorem; 4.2.3 The Atiyah-Singer Index Theorem; 5 Zeta Functions ofLaplacians; 5.1 The Zeta Function of a Laplacian; 5.2 Isospectral Manifolds; 5.3 Reidemeister Torsion and Analytic Torsion; 5.3.1 Reidemeister Torsion; 5.3.2 Analytic Torsion; 5.3.3 The Families Index Theorem and Analytic Torsion; Bibliography; Index
Lengua:
English
ISBN:
1-316-08717-4
0-511-94467-5
1-107-36206-7
0-511-62378-X
1-107-36697-6
1-299-40908-3
1-107-36451-5
Materia:
Enlace a formato físico adicional:
0-521-46300-9
0-521-46831-0
Punto acceso adicional serie-Título:
London Mathematical Society student texts ; 31

Préstamo interbibliotecario

Seleccione el centro al que pertenece para solicitar la petición de préstamo de este documento.

Filtrar listado de centros

No hay coincidencias

Relacionados

Mismo Género

Misma Editorial y Colección